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Abstract— Background modeling and subtraction is a natural 

technique for object detection in videos captured by a static 

camera, and also a critical preprocessing step in various high- 

level computer  vision  applications.  However,  there have  not 

been  many  studies  concerning  useful  features  and  binary 

segmentation  algorithms  for  this  problem.  We  propose  a 

pixelwise  background  modeling  and  subtraction  technique 

using multiple features,  where generative  and discriminative 

techniques are combined for classification. In our algorithm, 

color, gradient, and Haar-like features are integrated to handle 

spatio-temporal    variations    for   each   pixel.   A   pixelwise 

generative  background  model  is  obtained  for  each  feature 

efficiently  and  effectively  by Kernel  Density  Approximation 

(KDA).    Background    subtraction    is    performed    in    a 

discriminative manner using a Support Vector Machine (SVM) 

over background likelihood vectors for a set of features. The 

proposed algorithm is robust to shadow, illumination changes, 

spatial    variations    of    background.    We    compare    the 

performance of the algorithm with other densitybased methods 

using  several  different  feature  combinations  and  modelling 

techniques, both quantitatively and qualitatively. 
 

Keywords— Background modeling and subtraction, Haar-like 

features, support vector machine, kernel density 

approximation. 

 
1.    Introduction 

 

Both wind energy and ocean energy have been the 

identification of regions of interest is typically the first step 

in many computer vision applications, including event 

detection, visual surveillance, and robotics. A general object 

detection  algorithm may be desirable,  but it is extremely 

difficult to properly handle unknown objects or objects with 

significant variations in color, shape, and texture. Therefore, 

many practical computer vision systems assume a fixed 

camera  environment,  which  makes  the  object  detection 

process much more straightforward; a background model is 

trained   with   data   obtained   from   empty   scenes   and 

foreground regions are identified using the dissimilarity 

between the trained model and new observations. This 

procedure is called background subtraction. Various 

background modeling and subtraction algorithms have been 

proposed [1], [2], [3], [4], [5] which are mostly focused on 

modeling methodologies, but potential visual features for 

effective modeling have received relatively little attention. 

The study of new features for  background modeling may 

overcome or reduce the limitations of typically used features, 

and the combination of several heterogeneous features can 

improve performance, especially when they are 

complementary and uncorrelated. There have been several 

studies for using texture for background modeling to handle 

spatial variations in the scenes; they employ filter responses, 

whose computation is typically very costly. Instead of 

complex filters, we select efficient Haar-like features [6] and 

gradient features to alleviate potential errors in background 

subtraction caused by shadow, illumination changes, and 

spatial and structural variations. Model-based approaches 

involving probability density function are common in 

background  modeling  and  subtraction,  and  we  employ 

Kernel Density Approximation (KDA) [3], [7], where a 

density function is represented with a compact weighted sum 

of  Gaussians  whose number,  weights,  means,  and 

covariances are determined automatically based  on mean- 

shift mode-finding algorithm. In our framework, each visual 

feature is modeled by KDA independently and every density 

function is 1D. By utilizing the properties of the 1D mean- 

shift mode-finding procedure, the KDA can be implemented 

efficiently because we need to compute the convergence 

locations for only a small subset of data. When the 

background is modeled with probability density functions, 

the probabilities of foreground and background pixels should 

be discriminative, but it is not always true. Specifically, the 

background  probabilities  between  features  may  be 

inconsistent due to illumination changes, shadow, and 

foreground  objects  similar  in  features  to the  background. 

Also, some features are highly correlated, i.e., RGB color 

features. So, we employ a Support Vector Machine (SVM) 

for  nonlinear  classification,  which  mitigates  the 

inconsistency and the correlation problem among features. 

The final classification between foreground and background 

is based on the outputs of the SVM. 

There are three important aspects of our algorithm— 

integration   of   multiple   features,   efficient   1D   density 

estimation  by KDA,  and  foreground/background 

classification by SVM. These are coordinated tightly to 

improve background subtraction performance. An earlier 

version of this research appeared in [8]; the current paper 

includes more comprehensive analysis of the feature sets and 

additional experiments. 

PREVIOUS WORK 

The main objective of background subtraction is to obtain an 

effective and efficient background model for foreground 

object detection. In the early years, simple statistics, such as 

frame differences and median filtering, were used to detect 

foreground objects. Some techniques utilized a combination 
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of local statistics [9] or vector quantization [10] based on 

intensity or color at each pixel. More advanced background 

modeling methods are densitybased, where the background 

model  for  each  pixel  is defined  by a  probability density 

function based on the visual features observed at the pixel 

during  a  training  period.  Wren  et  al.  [11]  modeled  the 

background   in   YUV   color   space   using   a   Gaussian 

distribution  for  each  pixel.  However,  this method  cannot 

handle multimodal density functions, so it is not robust in 

dynamic environments. A mixture of Gaussians is another 

popular density-based method which is designed for dealing 

with  multiple  backgrounds.  Three  Gaussian  components 

representing the road, shadow, and vehicle are employed to 

model the background in traffic scenes in [12]. An adaptive 

Gaussian mixture model is proposed in [2] and [13], where a 

maximum  of  K  Gaussian  components  for  each  pixel  are 

allowed   but   the   number   of   Gaussians   is   determined 

dynamically.  Also, variants of incremental EM algorithms 

have  been  employed  to  deal  with  real-time  adaptation 

constraints of background modeling [14], [15]. However, a 

major  challenge  in  the  mixture  model  is  the absence  or 

weakness   of   strategies   to   determine   the   number   of 

components; it is also generally difficult to add or remove 

components  to/from   the  mixture  [16].   Recently,   more 

elaborate and recursive update techniques are discussed in [4] 

and [5]. However, none of the Gaussian mixture models have 

any principled way to determine the number of Gaussians. 

Therefore, most real-time applications rely on models with a 

fixed number of components or apply ad hoc strategies to 

adapt the number of mixtures over time [2], [4], [5], [13], 

[17]. Kernel density estimation is a nonparametric density 

estimation  technique that has been successfully applied to 

background subtraction [1], [18]. Although it is a powerful 

representation for general density functions, it requires many 

samples  for accurate estimation  of the underlying density 

functions  and  is  computationally  expensive,  so  it  is  not 

appropriate for real-time applications, especially when high- 

dimensional   features   are   involved.   Most   background 

subtraction  algorithms are based  on  pixelwise  processing, 

but multilayer  approaches are also introduced in  [19] and 

[20], where background models are constructed at the pixel, 

region, and frame levels and information from each layer is 

combined for discriminating foreground and background. In 

[21],  several  modalities  based  on  different  features  and 

algorithms are integrated and a Markov Random Field (MRF) 

is employed for the inference procedure. The co-occurrence 

of  visual  features  within  neighborhood pixels is used  for 

robust background subtraction in dynamic scenes in [22]. 

Some research on background subtraction has 

focused more on features than the algorithm itself. Various 

visual features may be used to model backgrounds, including 

intensity, color, gradient, motion, texture, and other general 

filter responses. Color and intensity are probably the most 

popular features for background modeling, but several 

attempts have been made to integrate other features to 

overcome their limitations. There are a few algorithms based 

on motion cue [18], [23]. Texture and gradients have also 

been successfully integrated for background modeling [24], 

[25] since they are relatively invariant to local variations and 

illumination changes. In [26], spectral, spatial, and temporal 

features are combined, and background/foreground 

classification is performed based on the statistics of the most 

significant   and   frequent   features.   Recently,   a   feature 

selection technique was proposed for background subtraction 

[27]. 

 
3 BACKGROUND MODELING AND SUBTRACTION 

ALGORITHM 

This section describes our background modeling and 

subtraction method based on the 1D KDA using multiple 

features. KDA is a flexible and compact density estimation 

technique [7], and we present a faster method to implement 

KDA for 1D data. For background subtraction, we employ 

the SVM, which takes a vector of probabilities obtained from 

multiple density functions as an input. 

3.1 Multiple Feature Combination 
The most popular  features  for  background modeling and 
subtraction are probably pixelwise color (or intensity) since 

they are directly available from images and reasonably 

discriminative. Although it is natural to monitor color 

variations at each pixel for background modeling, they have 

several significant limitations as follows: 

 They are not invariant to illumination changes and 

shadows. 

 Multidimensional   color   features   are   typically 

correlated and joint probability modeling may not 
be advantageous in practice. 

 They  rely  on  local  information  only  and  cannot 

handle structural variations in neighborhoods. 

We integrate color, gradient, and Haar-like features together 

to alleviate the disadvantages of pixelwise color modeling. 

The gradient features are more robust to illumination 

variations than  color  or  intensity features and are able to 

model local statistics effectively.  So, gradient features are 

occasionally used in background modeling problems [26], 

[27].   The  strength   of  Haar-like   features   lies  in  their 
simplicity    and   the   ability    to   capture    neighborhood 

information. Each Haar-like feature is weak by itself, but the 

collection  of  weak  features  has  significant  classification 

power [6], [28]. The integration of these features is expected 

to improve the accuracy of background subtraction. We have 

11 features altogether, RGB color, two gradient features 

(horizontal  and  vertical),  and  six  Haar-like  features.  The 

Haar-like features employed in our implementation are 

illustrated in Fig. 1.   The Haar-like features are extracted 

from 9 X 9 rectangular regions at each location in the image, 

while the gradient features are extracted with 3 X 3 Sobel 

operators. The fourth and fifth Haarlike features are similar 

to the gradient features, but differ in filter design, especially 

scale. 
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Fig. 1. Haar-like features for our background modeling. 

 
3.2 Background Modeling by KDA 

The background probability of each pixel for each feature is 
modeled with a Gaussian mixture density function.1 There 

are various methods to implement this idea, and we adopt 

KDA,   where   the   density   function   for   each   pixel   is 

represented   with   a   compact   and   flexible   mixture   of 

Gaussians. The KDA is a density approximation technique 

based on mixture models, where mode locations (local 

maxima) are detected automatically by the meanshift 

algorithm and a single Gaussian component is assigned to 

each detected mode. The covariance for each Gaussian is 

computed by curvature fitting around the associated mode. 

More details about KDA are found in [7], and we summarize 

how to build a density function by KDA for 1D case. 

Suppose that training data for a sequence are composed 

of n frames and xF,i (i=1,2,3…) is the ith value for feature F 

at a certain location. Note that the index for pixel location is 

omitted for simplicity. For each feature, we first construct a 

1D   density   function   at   each   pixel   by  kernel   density 

estimation based on Gaussian kernel as follows: 
 

 
 
 

As described  above,  the KDA finds local maxima in the 

underlying density function (1), and a mode-based 

representation of the density is obtained by estimating all the 

parameters for  a  compact  Gaussian  mixture.  The original 

density function is simplified by KDA as 
 

 
 
 

3.3    Optimization in One Dimension 

We are only interested  in  1D density functions,  and the 

convergence of each  sample point can be obtained much 

faster than the general case. Given 1D samples, xi and xj (i; j 

¼ 1; . . . ; n), the density function created by kernel density 
estimation has the following properties: 

 

 
We sort the sample points in ascending order, and start 

performing mean-shift mode finding from the smallest 

sample.  When  the current  sample moves  in  the  gradient 
ascent   direction   by   the   mean-shift   algorithm   in   the 

underlying density function and passes another sample’s 
location during the iterative procedure, we note that the 

convergence point of the current sample must be the same 

as the convergence location of the sample just passed, 
terminate  the  current  sample’s  mean-shift  process,  and 

move on to the next smallest sample, where we begin the 

mean-shift process again.
3  

If a mode is found during the 

 

 
 
 
 
 
mean-shift iterations, its location is stored and the next 

sample is considered. After 
 
 

2. Strictly speaking, it may be sometimes  necessary to 
compute the convergences at more locations due to a 
cascaded merges. 

This can be implemented using a reference variable. If a 

sample is moving backward, its convergence location is the 

same as the previous one. If a sample is moving forward, its 

convergence  location  can  be  set  when  the next mode  is 

found. 

 
3.4    Foreground and Background Classification 

After background modeling, each pixel is associated with k 

1D Gaussian mixtures, where k is the number of features 
integrated. Background/foreground classification for a new 
frame is per-formed using these distributions. The 

background probability of a feature value is computed by 
(2), and k probability values are obtained from each pixel, 
which are represented by a k-dimen-sional vector. Such k- 
dimensional    vectors    are    collected    from    annotated 

foreground and background pixels, and we denote them by 

yj (j ¼ 1; . . . ; N), where N is the number of data points. 
In     most     density-based     background     subtraction 

algorithms, the probabilities associated with each pixel are 

combined in a straightforward way, either by computing the 

average probability or by voting for the classification. 

However, such simple methods may not work well under 

many real-world situations due to feature dependency and 

nonlinearity.  For  example, pixels in  shadow may have a 

low-background   probability   in   color   modeling   unless 

shadows are explicitly modeled as transformations of color 

variables, but high-background probability in texture 

modeling. Also, the foreground color of a pixel can look 

similar  to  the  corresponding  background  model,  which 

makes the background probability high although the texture 

probability is probably low. Such inconsistency among 

features is aggravated  when many features  are integrated 

and data are high dimensional, so we train a classifier over 

the background probability vectors for the feature set, fyjg1:N 

.   Another   advantage   to   integrating   the   classifier   for 
foreground/background segmentation is to select 

discriminative features and reduce the feature dependency 

problem; otherwise, highly correlated nondiscriminative 

features may dominate the classification process regardless 

of the states of other features. 

 
An   SVM   is   employed   for   the   classification   of 

background and foreground. We used a radial basis function 

kernel  to  handle  nonlinear  input  data,  and  used 

approximately 40 K data points (10 K for foreground and 30 

K for background) for training. Note that a universal SVM 

is used  in  our  method  for  all sequences—not  a  separate 

SVM for each pixel nor for each sequence; this is possible 

because we learn the classifier based on probability vectors 
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rather than feature vectors directly. A similar approach is 

introduced in [29], where the magnitude of optical flow and 

interframe image difference are used as features for 

classification. However, the 2D features have limitation in 

handling dynamic and multimodal scenes properly—e.g., 

stationary foreground and moving background. Other 

background subtraction  methods  using  SVM require  per- 

pixel (or per-block) classifiers and separate 
 
 
 
 
 
 
 
 

 
Fig. 3. Diagram for training procedure. Note that we use 

pixelwise density functions by KDA but train a single 
common SVM for all pixels and all sequences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Correlations between features. The upper triangular 

matrix   illustrates   the   correlation   coefficients   between 

feature values while the lower triangular matrix represents 

the correlation coefficients between background likelihoods 

of features. 
 

 

 
 

 
Fig.   5.   Feature   performance   for   classification.   The 

histograms of background probabilities for foreground and 

background pixels are presented for each feature. Note that, 

in the ideal case, foreground should have low-background 

probabilities only and background pixels should have high- 

background probability only. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Improvement of discriminativeness by adding 
heterogeneous  features—  gradient  or  Haar-like  features. 
Note that the combination of R and G may not improve 
classification performance compared with R only. (See also 
Fig. 5a.) However, when the vertical gradient or the first 
Haar-like feature are combined with R feature, the 
characteristics of foreground pixels become quite different 
from those of background pixels. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. PR curves for different density estimations. 

 
4  EXPERIMENTS 

 

We present the performance of our background modeling 

and subtraction algorithm using real videos. Each sequence 

involves challenges such as significant pixelwise noises 

(subway),   dynamic   background   of   a   water   fountain 

(fountain), and reflections and shadow in wide area (caviar 

[32]). 
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4.1    Feature Analysis 

We describe the characteristics of individual features and 

the performance of multiple feature integration. Fig. 4 

illustrates  the correlation  between  every pair  of features. 

RGB colors and three Harr-like features are significantly 

correlated, and the fourth and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. PR curves of our algorithms with several different 

feature sets. 

 
fifth Haar-like features have nontrivial correlation with 

vertical and horizontal gradient features, respectively, as one 

would expect. However, note that the correlations between 

background likelihoods of even highly correlated features 

are not so strong, which explains why there are still benefits 

of integrating highly correlated features.  Fig. 5 illustrates 

the  discriminativeness  of  features  for 

foreground/background classification. The histograms of 

background probabilities for foreground and background 

pixels are presented for three different features—a 

representative feature for color, gradient, and Haar-like 

feature.    According   to   Fig.   5,   color    features   have 

substantially poor quality, compared with the other two 

features;  background  probabilities  for  background  pixels 

vary significantly, which makes it difficult to classify them 

correctly.   Also,   background   probabilities   of   gradient 

features for foreground pixels are widespread. 

 
The  combination  of  heterogeneous  features  improves 

back-ground/foreground classification  performance.  Recall 

that the R feature has mediocre quality for background 

subtraction. The inclusion of the G feature does not help 

much (Fig. 6a) because 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)RGB+Grad+Haar 
 

 
 
 
 
 
 
 
 
 
 
 

(b)RGB 
 

Fig. 9. PR curves for testing the contribution of SVM. 

background  probabilities  of  pixels  in  these  two  feature 

bands are highly correlated. However, this problem is 

alleviated when gradient or Haar-like feature are integrated; 

foreground and background pixels are now more separable 

so that classification is more straightforward (Figs. 6b and 

6c). 

 
Evaluation of Background Subtraction 

The performance of our background subtraction algorithm is 
evaluated in various ways. For quantitative evaluation, 

Precision- Recall (PR) curves are employed, where the 
precision and recall are defined as 
 

 
We  first  compared  our  algorithm  with  other  density- 

based techniques such as Gaussian Mixture Model (GMM) 
[5] and Kernel Density Estimation (KDE) [1] based on RGB 
color feature only. For the GMM method, we downloaded 
the code for [5] and tested two versions—with and without 
shadow detection. In our experiments, our algorithm with 
SVM (KDA+RGB+Grad+Haar) is noticeably better than 
KDE and GMM with/without shadow detection as shown in 
Fig. 7. Additionally, we implemented KDE with all 11 
features and SVM (KDE+RGB+Grad+Haar) and obtained 
comparable accuracy to our technique, which suggests the 

performance of KDA with respect to KDE.
4  

Note that the 
range of 0:9 to 0:95 in both precision and recall is critical to 
actual performance in background subtraction. 

 
The performance of several different feature sets are 
compared and illustrated in Fig. 8. Our algorithm with all 
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three features (RGB+Grad+Haar) has the best performance 

for all three sequences. The RGBþGrad shows better results 

than RGB only, and the performance of RGB+Haar is 

comparable to RGB+Grad+ Haar; the integration of gradient 

feature  is  not  very  useful  due  to  the  correlation  and 

similarity with related Haar-like features. However, the 

combination of the correlated features still improves the 

classification  performance nontrivially in the subway and 

the fountain sequence since the SVM plays a role to select 

proper  features  implicitly.  We  also  tested  our  algorithm 

using  four  independent  Haar-like  features  based  on  the 

result in Fig. 4, where RGB features are excluded since they 

are significantly correlated with some of the selected Haar- 

like features. The accuracy based on the independent Haar- 

like features is signifi-cantly lower than full feature 

combination. 

 
 

Fig.  10.  Background  likelihood  (top)  with  and  (bottom) 
without SVM. Bright pixels have higher BG likelihoods. 

 
The importance of the SVM to foreground/background 

segmentation  was tested,  and  Fig.  9  illustrates  the SVM 

improves classification. Three other simple classifiers are 

employed for comparison; the product (P), minimum (M), 

and sum (S) of probabilities for multiple features are 

computed and predefined thresholds are applied for 

classification. SVM is particularly useful for high- 

dimensional data; it is probably because the high- 

dimensional data have more nonlinear characteristics and it 

is more difficult to classify such data accurately with simple 

methods. Note that the performance of the SVM for 

correlated RGB is not good as presented in Fig. 9b. Fig. 10 

presents the background likelihood at each pixel, and 

provides   a   clear   idea   about   the   reason   for   better 

classification;  the  SVM  tends  to  handle  dynamic 

backgrounds   and   shadow   better.    Another   advantage 

observed in Fig. 10 is that background likelihoods of 

foreground and background pixels are separated better by 

the  SVM,  and  the  classification  is not  very  sensitive  to 

threshold  value. We also tested  how the performance  of 

SVM changes with different kernels, but did not observe 

any noticeable differences. 

Qualitative results for comparison of background 
subtraction   algorithms   are   presented   in   Fig.   11.   The 
threshold for each 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Background subtraction results of three algorithms. 

From top to bottom, the original images and the results of 

our method, KDE, and GMM are presented. Note that there 

is a moving car on the left side of the child in the fountain 

sequence, which is clearly visible in our algorithm but not 

detected by KDE or GMM. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Background subtraction results for three different 

feature    sets.    From    top    to    bottom,    results    with 
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RGB+Grad+Haar,  RGB+Grad,  and  RGB  are  illustrated. 

Note that various challenges such as reflection, shadow, 

dynamic background, etc., are handled effectively by our 

algorithm with the new feature set. 

 
algorithm   is   set   to   have   95   percent   precision   in 

classification. Fig. 11 shows our algorithm also has good 

qualitative performance compared with the other two. The 

performance of feature combinations are evaluated 

qualitatively and presented in Fig. 12. The combination of 

color, gradient, and Haar-like features outper-forms other 

feature sets in segmentation, especially when shadows, 

reflections, and dynamic backgrounds—tree branches and 

leaves in the rightmost area in the outdoor sequence—are 

involved. 

 
CONCLUSION 

We have introduced a multiple feature integration algorithm 
for background modeling and subtraction, where the 

background is modeled with a generative method and 

background and foreground are classified by a discriminative 

technique. KDA is used to represent a probability density 

function of the background for RGB, gradient, and Haar-like 

features  in  each   pixel,   where  1D  independent  density 

functions are used for simplicity. For classification, an SVM 

based on the probability vectors for the given feature set is 

employed.  Our algorithm demonstrates better  performance 

than other density-based techniques such as GMM and KDE, 

and the performance is tested quantitatively and qualitatively 

using a variety of indoor and outdoor videos. 
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