
Design and Implementation of RISC Processor

 using FPGA for Convolution Application
 Purandara Babu.N#1 , Manoj Kumar.K*2, Triveni.M#3

 P.G. Scholar (M. Tech), Dept. of ECE, AVR & SVR Engineering College, Kurnool, A.P, India

 puri.hyd@gmail.com afcatmanoj@gmail.com mrudalatriveni@gmail.com
 I.V.Rameswar Reddy M.Tech rameswar.iv@gmail.com

Abstract— In this paper, we propose a 16-bit non-pipelined RISC
processor, which is used for signal processing applications. The
processor consists of the blocks, namely, program counter, clock
control unit, ALU, IDU and registers. Advantageous architectural
modifications have been made in the incrementer circuit used in
program counter and carry select adder unit of the ALU in the
RISC CPU core. Furthermore, a high speed and low power
modified Wallace tree multiplier has been designed and introduced
in the design of ALU. The RISC processor has been designed for
executing 27-instruction set. It is expandable up to 32 instructions,
based on the user requirements. The processor has been realized
using Verilog HDL, simulated using Modelsim 6.2 and synthesized
using Synopsys. Power estimation and area estimation is done
using Synopsys Design Vision using SAED 90nm CMOS
technology and timing estimation is done using Synopsys
Primetime. In this paper, we have extended the utility of the
processor towards convolution application, which is one of the most
important signal processing application. The simulations depict the
total dissipated power by the processor to be approximately
329.3 μW with the total area of 65012 nm2.

Keywords— CISC, RISC, Convolution, Wallace Tree Multiplier.

I. INTRODUCTION
The trend in the recent past shows the RISC processors

clearly outsmarting the earlier CISC processor architectures.
The reasons have been the advantages, such as its simple,
flexible and fixed instruction format and hardwired control
logic, which paves for higher clock speed, by eliminating the
need for microprogramming. The combined advantages of
high speed, low power, area efficient and operation-specific
design possibilities have made the RISC processor ubiquitous.

The main feature of the RISC processor is its ability to
support single cycle operation, meaning that the instruction is
fetched from the instruction memory at the maximum speed of
the memory. RISC processors in general, are designed to
achieve this by pipelining, where there is a possibility of
stalling of clock cycles due to wrong instruction fetch when
jump type instructions are encountered. This reduces the
efficiency of the processors. This paper describes a RISC
architecture in which, single cycle operation is obtained
without using a pipelined design. It averts possible stalling of
clock cycles in effect [1]-[3].

The development of CMOS technology provides very
high density and high performance integrated circuits. The

performance provided by the existing devices has created a
never-ending greed for increasingly better performing devices.
This predicts the use of a whole RISC processor as a basic
device by the year 2020. However, as the density of IC
increases, the power consumption becomes a major
threatening issue along with the complexity of the circuits.
Hence, it becomes necessary to implement less complex, low
power processor designs.

Energy recovery is proving to be a promising approach
for the design of low power VLSI circuits. In recent years,
studies on adiabatic computing have grown for low power
systems and several adiabatic logic families have been
proposed [4]-[6]. In this regard, we have utilized 2N-2N2P
quasi-adiabatic logic in the design of incrementer circuits and
carry select adder circuits along with architectural changes, in
order to prove the power efficiency of the proposed structures
with those found in the literatures.

Program counter is one of the most complex building
blocks of the processor design. It performs mainly two
operations, namely, incrementing and loading. In order to
address this issue, the present work establishes a novel design
of an incrementer structure [7]. It is realized using the quasi-
adiabatic 2N-2N2P logic structure. The structure incurs 17
times reduction in power, while comparing against
conventional CMOS counterpart. A speed increase of about
25% and a marginal amount of 8% area saving are achieved.

The second part of this work concentrates on the
complexity reduction in ALU by optimizing the design of
arithmetic circuits. The previous works in literature focus on
energy efficient arithmetic circuits. In order to increase the
operating speed and power efficiency of the processor, we
have come out with a novel design of a carry select adder
structure [8]. This has also been compared with the
conventional adders to validate the design in terms of power-
delay product.

In order to employ the processor for signal processing
applications, we have integrated a modified Wallace tree
multiplier that uses compressor circuits to achieve low power,
high speed operation [9], in the ALU. Reference [10] suggests
that it is possible to achieve the high speed, low power and
area efficient operations by reducing the stronger operations
such as multiplication, at the cost of increasing the weaker
operations such as addition.

978-1-4577-0590-8/11/$26.00 ©2011 IEE

394

International Journal of Advanced and Innovative Research (2278-7844) / # 182 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 182

Fig.1 16-bit Non-Pipelined RISC Processor

Convolution is an important signal processing application
which is used in filter design. Many algorithms have been
proposed in order to achieve an optimized performance of the
filters by optimizing the convolution design. Modified
Winograd algorithm is notable among them. They require 4
multiplication operations only, when compared to 6 for a 3*2
normal convolution methodology with an additional rise in the
number of adders to 9 from 4.

In this work, we have designed and developed a 16-bit
single cycle non-pipelined RISC processor. In order to
improve the performance, modification on incrementer circuit
and carry select adder circuit have been done and modified
structure has been integrated into the design and the
performance is validated. A multiplier structure has been
developed and modified Winograd algorithm is executed in
order to validate our claim.

The rest of the paper is organized as follows. Section II
presents the design of the RISC CPU. Section III presents the
implementation of modified Winograd convolution algorithm.
Section IV gives the ASIC implementation results and
analysis. Section IV concludes.

II. DESIGN OF 16-BIT RISC CPU

A. Architecture
The architecture of the proposed RISC CPU is a uniform

16-bit instruction format, single cycle non-pipelined processor.
It has a load/store architecture, where the operations will only
be performed on registers, and not on memory locations. It
follows the classical von-Neumann architecture with just one
common memory bus for both instructions and data. A total of
27 instructions are designed as a first step in the process of
development of the processor. The instruction set consists of
Logical, Immediate, Jump, Load, store and HALT type of
instructions. The Halt instruction acts as a border line between
the instruction and data memory. This offers the flexibility to
the programmer, who uses this processor core to define their
own instruction and data memory within the allotted 64
memory registers. Each of the register is of 16-bits width
capacity. The bit widths of each unit are as follows.

Instruction Unit : 16 bits
Execution Unit : 8 bits
Memory Unit : 16 bits
Op-code Width : 5 bits.

B. Detail of Logical Blocks
Figure 2 illustrates the block diagram of the 16-bit RISC

CPU. The proposed RISC CPU consists of five blocks,
namely, Arithmetic and Logical Unit (ALU), Program
Counter (PC), Register file (REG), Instruction Decoder Unit
(IDU) and Clock Control Unit (CCU). The data-path of the
proposed CPU in Fig. 1 is explained as follows.

1) Program Counter: The Program Counter (PC) is a 16-bit
latch that holds the memory address of location, from which
the next machine language instruction will be fetched by the
processor. The proposed PC is the largest sub-block and
second to the control unit in complexity. It controls the flow
of the instructions execution and it ensures the logical
operation flow of the processor. It performs the two operations,
namely, incrementing and loading. For most instructions, the
PC is simply incremented in preparation for the following
instruction or the following instruction nibbles. In general, a
normal conventional adder circuit will be used for
incrementing action. However, it leads to increased hardware
use along with more power dissipation. Hence, this work
strives for a low power and novel incrementer circuit design.

In this design, we employ a 6-bit pointer to indicate the
instruction memory. It additionally uses a 6-bit pointer to
point to the data memory, which will be used only when a
Load/Store instruction is encountered for execution.

2) Arithmetic and Logic unit: The arithmetic and logic unit
(ALU) performs arithmetic and logic operations. It also
performs the bit operations such as rotate and shift by a
defined number of bit positions. The proposed ALU contains
three sub-modules, viz. arithmetic, logic and shift modules.

The arithmetic unit involves the execution of addition
operations and generates Sign flag and Zero flag as per the
result shown in the process. In order to reduce the complexity
of the adder circuits used in the arithmetic unit of the RISC
CPU, a very fast and low power carry select adder circuit has
been introduced. The ALU also consists of a modified
Wallace tree multiplier, which uses compressor circuits to
achieve low power and improved speed of operation. The
multiplier is designed to execute in a single cycle. Hence, it
satisfies the requirement of the RISC design, to execute single
cycle instructions.

International Journal of Advanced and Innovative Research (2278-7844) / # 183 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 183

The shift module is used for executing instructions such as
rotation and shift operations. The shift module is mandatory
for signal processing applications, which needs division by 2.
This is achieved by a single right shift operation. The logic
unit is used to perform logical operations, such as, Ex-or, OR,
and AND. The Data out of each ALU operation is written
back into the corresponding destination register, along with
the flags updated. In order to maintain simplicity of the design,
the carry out of the ALU is not taken into consideration.

3) Register File: The register file consists of 8 general
purpose registers of 16-bits capacity each. These register files
are utilized during the execution of arithmetic and data-centric
instructions. It is fully visible to the programmer. It can be
addressed as both source and destination using a 3-bit
identifier. The register addresses are of 3-bit length, with the
range of 000 to 111. The load instruction is used to load the
values into the registers and store instruction is used to
retrieve the values back to the memory to obtain the processed
outputs back from the processor. The Link register is used to
hold the addresses of the corresponding memory locations.

4) Instruction Decoder Unit: Our instruction set is limited yet
comprehensive. Since our data bus is only 5 bits wide, it was
decided to keep the number of instructions supported within
32 for easier implementation. At present, only 27 instructions
have been implemented. The rest have been reserved for
porting digital processing applications into our processor. The
decoder units decodes the instruction and gives out the 3-bit
source and destination addresses respectively, depending on
the op-code’s operation and it also decides whether the write-
back circuit has to be enabled or not.

In case of Load/Store instructions, the IDU updates the
Link register. In case of Jump instructions, if the conditions
are satisfied, the IDU updates the PC register with the new
address from where the next instruction has to be retrieved
rather than the normal incremented value.

Figure 2(a) shows the instruction format followed by
Logical instructions and Data transfer instructions, such as,
MOV, AND, OR, XOR, ADD, SUB, SL (Shift Left), RL
(Rotate Right), SR (Shift Right), RR (Right Rotate), SWAP
and Multiply instructions. Fig. 2(b) shows the instruction
format followed by Immediate instructions. This type has the
data vested into the instructions, such as LHI (Load 8-bit
value into the eight higher significant bits of the given
register), LLI (Load 8-bit value into given register’s 8 least
significant bits), ANDI, ORI, XORI, ADDI, SUBI.

Figure 2(c) depicts the format of Load instruction. The
instruction format for Store instruction is given in Fig. 2(d).
Fig. 2(e) depicts the instruction format for JUMP, JZ (Jump if
Zero), JNZ (Jump if not Zero), JP (Jump if positive), JN
(Jump if Negative) instructions. Fig. 2(f) shows the format for
the HALT command.

5) Clock Control Unit: Efficient phase scheduling is required
to optimize the throughput and the energy consumption of the
processor. In this paper, we propose a clock control unit (CCU)
which is tasked with efficient phase scheduling, to select the
various blocks of the processor.

2(a)

2(b)

2(c)

2(d)

2(e)

2(f)

Fig. 2 (a) to (f) 16-Bit Instruction Format

III. IMPLEMENTATION OF MODIFIED WINOGRAD
CONVOLUTION ALGORITHM

To describe the functionality of the processor towards its
use for signal processing applications, we have executed a 3*2
modified Winograd algorithm by implementing its pneumonic
code as shown below:

1. Load x0
2. Load x1
3. Load x2
4. Mov x2
5. Add x0, x2
6. Mov x1
7. Add (5), x1
8. Sub (5), x1
9. Mov Reg D to Reg E
10. Load H0
11. Load H1
12. Load H2
13. Load H3
14. Mul H0, X0
15. Mul H1, X1
16. Mul H2, X2
17. Mul H3, X3
18. SR (13) gives S0
19. SR (16) gives S3
20. Add (16), (17)
21. Sub (20), (15)
22. SR (21) gives S1
23. Add (15), (16)
24. Sub (14), (15)
25. SR (24) gives S2
26. HLT
The respective op-codes are initially stored in the

instruction memory of the processor. The inputs are stored in

5-bit op-code 6-bit Destination
Address

3-bit Source
Address 2-bit Zeros

International Journal of Advanced and Innovative Research (2278-7844) / # 184 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 184

the corresponding data memory, which should, in this case lie
beyond the memory location 26. The maximum size of inputs
x0, x1, x2 can each be of 6 bits width, while the values of h0
and h1 can each be of 3 bits width.

The execution of the program gives the required results S0,
S1, S2, and S3 after 26 clock cycles, thus validating the single
cycle instruction execution of the processor. It also proves its
use in a typical signal processing application. Repeated
execution of multiplication and addition instructions can be
utilized in order to execute the MAC operation, which is
widely used in signal processing applications. It would thus
eliminate the need for a dedicated MAC unit.

IV. ASIC IMPLEMENTATION AND RESULTS
 The RISC processor described above is designed using

Verilog HDL and is simulated using Modelsim 6.2. The
proper functioning of the processor is validated. The
simulation result shows that the processor is capable of
implementing the given instruction in single clock cycle,
thereby satisfying the basic requirements of the RISC
processor.

In order to evaluate the system performance, usage of
synthesis software were used to map the proposed processor
on a target library. The target library includes the generic
technology mapping information. The tool employed for
mapping the Verilog-HDL components to the cell library is
the Synopsys design compiler. It mapped the Verilog-HDL
components to a SAED 90nm ASIC standard cell library.

The power dissipation report produced by the design
compiler is shown in Table I below. The total power
dissipation was found to be 7.44mW. In order to achieve
reduced power consumption, a low power design technique
called clock gating was employed. To save power, clock
gating technique adds more logic to the circuitry to prune the
clock tree, thus disabling portions of the circuitry so that its
flip-flops do not change state unnecessarily. This technique
reduces the power consumption to 3.04mW. The application
specific power dissipation still gets reduced to 6.62μW, when
the switching activity file is given as input to the power
compiler.

The design compiler report depicting the area consumed
by the processor shows the total area occupied by the
processor to be 79264.49 nm2. The clock gating technique still
reduces this area to be around 65012.356 nm2.

The primetime tool of Synopsys is used to measure the
timing results of the processor. The constraint provided for the
processor is 5ns (200 MHz), and the slack is found to met for
both setup time and hold time. The critical path value
indicates that the processor can run efficiently at a speed of
200 MHz.

The application specific processor’s specifications have
thus found to have:

Speed : 200 MHz
 Area : 65012 nm2
Power Dissipation : 329.3 μW

TABLE I
POWER DISSIPATION

Cell Internal Power 51.1165 nW
Net Switching Power 10.128 nW
Total Dynamic Power 61.2445 nW
Cell Leakage Power 329.2979 μW
Total Power dissipation 329.3 μW

V. CONCLUSIONS
The design of a single cycle 16-Bit non-pipelined RISC

processor for its application towards convolution application
has been presented. Novel adder and multiplier structures
have been employed in the RISC architecture. The processor
has been designed for executing the instruction set comprising
of 27 instructions in total. It is shown expandable up to 32
instructions, based on the user requirements. The processor
design promises its use towards any signal processing
applications.

ACKNOWLEDGMENT
We place our gratitude on record to the Department of

Electronics and Communication Engineering, SSN College of
Engineering, Rajiv Gandhi Salai, Chennai for the support
rendered to us in carrying out this work.

REFERENCES
[1] Robert S. Plachno, VP of Audio “A True Single Cycle RISC Processor

without Pipelining”. ESS Design White Paper – RISC Embedded
Controller.

[2] Youngjoon Shin, Chanho Lee, and Yong Moon, “A Low Power 16-Bit
RISC Microprocessor Using ECRL Circuits”, ETRI Journal, Volume
26, Number 6, December 2004.

[3] Yasuhiro Takahashi, Toshikazu Sekine, and Michio Yokoyama,
“Design of a 16-bit Non-pipelined RISC CPU in a Two Phase Drive
Adiabatic Dynamic CMOS Logic,” International Journal of Computer
and Electrical Engineering, Vol. 1, No. 1, April 2009 1793-8198.

[4] V. B. Saambhavi and V. S. Kanchana Bhaaskaran, A 16-Bit RISC
Microprocessor Using DCPAL Circuits. International Journal of
Advanced Engineering and Technology (IJAET), E-ISSN-0976-3945,
Vol.II, Issue I, January-March 2011, pp. 154-162

[5] J.S. Denker, “A Review of Adiabatic Computing,” IEEE Symp. Low
Power Electronics, 1994, pp. 94-97.

[6] H. Mahmoodi-Meinnand, A. Afzali-Kusha, and M. Nourani,
“Adiabatic Carry Look-Ahead Adder with Efficient Power Clock
Generator,” IEEE Proc., vol. 148, 2001, pp. 229-234.

[7] K. Nishimura, T. Kudo, and H. Amano, “Educational 16-bit
microprocessor PICO-16,” Proc. 3rd Japanese FPGA/PLD design
conference and exhibit (Japanese Edition), Tokyo, July 19–21, 1995,
pp. 589–595.

[8] Samiappa Sakthikumaran et al., “A Very Fast and Low Power
Incrementer and Decrementer Circuits”, International Journal of
Computer Communication and Information System (IJCCIS) Vol2.
No.1 – 2011, pp. 200-203.

[9] Samiappa Sakthikumaran et al., “A Very Fast and Low Power Carry
Select Adder Circuits”, 3rd International Conference on Electronics
Computer Technology - ICECT 2011.

[10] Samiappa Sakthikumaran et al., “A Novel Low Power and High Speed
Wallace Tree Multiplier for RISC Processor”, 3rd International
Conference on Electronics Computer Technology - ICECT 2011.

[11] Keshab K.Parhi, VLSI Digital Signal Processing Systems, Wiley India
Edition,1999.

International Journal of Advanced and Innovative Research (2278-7844) / # 185 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 185

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

