
Design and Implementation of Binary Tree

architecture for Fast Multiplication
Mr.S.B.Jadhav

#1
, Mrs.J.K.Patil

*2
, Mr.Y.S.Jagdale

#3

#
Department of Electronics& Telecommunication Engineering,

Bharati Vidyapeeth’s College of Engineering Kolhapur, M.S India
1
sachin30_2k6@rediffmail.com

3
 ysj@ rediffmail.com

Bharati Vidyapeeth’s College of Engineering Kolhapur, M.S India
2
 jayamala.p@ rediffmail.com

Abstract— This paper presents the details of hardware

implementation of modified partial product reduction tree using

4:2 and 5:2 compressors. Speed of multiplication operation is

improved by using higher compressors .In order to improve the

speed of the multiplication process within the computational

unit; there is a major bottleneck that is needed to be considered

that is the partial products reduction network which is used in

the multiplication block .For implementation of this stage

require addition of large operands that involve long paths for

carry propagation. The proposed architecture is based on binary

tree constructed using modified 4:2 and 5:2 compressor circuits.

Increasing the speed of operation is achieved by using higher

modified compressors in critical path. Our objective of work is,

to increase the speed of multiplication operation by minimizing

the number of combinational gates using higher n: 2

compressors. The experimental test of the proposed modified

compressor is done using Spartan-3FPGA device (XC3S400 PQ-

208).Using tree architectures for the partial products reduction

network represent an attractive solution that is frequently

applied to speed up the multiplication process. The simulation

result shows 4:2 and 5:2 compressor output which is done using

Questa Sim 6.4c Mentor Graphics tool.

Keywords— Binary tree (4:2, 5:2), Field Programmable Array

 (FPGA), Digital Signal Processing (DSP),

 Application Specific Integration Circuits (ASCIs)

I. INTRODUCTION

Multiplication is the key arithmetic operation which is

widely used in many microprocessors and digital signal

Processing applications. Microprocessors use multipliers

within their arithmetic logic units, and digital signal

processing systems require multipliers to implement DSP

algorithms such as convolution and filtering. Since the

multiplier lies directly within the critical path in most systems,

the demand for high speed multiplier is continuously

increasing [1]. However, with the fast growing of portable

computing devices, the power consumption of the multiplier

has become equally important. All this has resulted in the

pursuit of high speed low power multiplier design techniques.

A multiplication process essentially consists of generating

the partial product's matrix, reducing the matrix to two rows

followed by the final carry propagation addition. As the main

determining factor with regards to the performance

characteristics of a multiplier, the most study aspect of digital

multiplication is the partial product reduction circuitry [2].

Traditionally, partial product reduction has been carried out

through the use of carry-save adders consisting of rows of 3:2

counters otherwise known as full-adders. In the past few years,

a focus has been put on higher-order reduction scheme mainly

through the use of 4:2 compressors. As an alternative to 3:2

counters, the 4:2 digital compressors were first proposed by

Weinberger [3] in 1981. Similar to counter structures, digital

compressors reduce a given set of inputs to a vector output.

But it differs itself by introducing the notion of horizontal data

paths within stages of reduction, which has transformed the

standard frame of mind for counter based partial product

reduction schemes into compressor based schemes [4]. There

are two well-known kinds of parallel multiplication

algorithms, array multiplication algorithms and Dadda

multiplication algorithms. In array multiplication algorithms,

cells, which consist of an AND-gate computing inner products

and a counter, are put in a network pattern like an array.

Dadda multiplication algorithms use AND-gates, carry save

counters and a carry propagate adder (CPA) [5, 6].Dadda

multiplication algorithms have a tree structure.

This paper presents binary tree architecture suited for

increasing the speed multiplication and addition operation

using 4:2 and 5:2 higher compressors. Multiplication using

binary tree structure, cells, which consist of an AND-gate

computing inner products and a counter, are put in a network

pattern like a tree structure. The implementation efficiency is

a result of improving overall propagation delay in the adder

stage operation which mainly cause for speed up the operation

as compare to array multiplier architecture

II. LOGICAL DECOMPOSITION OF BINARY TREE

A. 4:2 Compressor using Full Adder

In general, compressors reduce N-input bits to a single sum bit

of equal weight to that of the inputs but unlike counters, the

remaining output bits are all of equal weight: one bit position

greater than that of the inputs. Although the 4:2 compressors

is unlike defined as a counter, the primitive configuration of

International Journal of Advanced and Innovative Research (2278-7844) / # 158 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 158

4:2 compressor is based on a two cascaded full adder structure,

which has 4 inputs and 2 outputs as shown in Figure. 1. The

four inputs X1, X2, X3 and X4, and the output Sum have the

same weight. The output Carry is weighted one binary bit

order higher. The 4:2 compressors receives an input CIN from

the preceding module of one binary bit order lower in

significance, and produce an output Cout to the next

compressor module of higher significance as shown in figure

2. Besides, to accelerate the carry save summation of the

partial products, it is imperative that the output, Cout be

independent of the input CIN. Different structures of 4:2

compressors exist and they all have to abide by the

fundamental equation given as follows [5]:

 S= 21 XX 3X

 Sum=S INCX 4 = 21 XX 3X CIN (1)

Figure 1. Symbol of 4: 2 counter

The most primitive implementation of 4:2 compressors is that

of two cascaded full adders, as shown in Figure. 2. [1]. By

increasing regularity, this configuration lends itself to gains at

the architecture level of the multiplier. At gate level, 4:2

compressors are anatomized into XOR gates and carry

generators, as shown in Figure. 3 a]. Therefore, different

designs can be classified based on the critical path delay in

terms of the number of primitive gates. Let ΔXOR denote the

delay of an XOR gate and ΔCGEN denote the delay of a carry

generator. A compressor is said to have a delay of (m ΔXOR

+ n ΔCGEN) if it’s critical path consist of m XOR gates and n

carry generators. Since the difference between the delays of

widely used XOR gate and carry generator is trivial in an

optimized design, the delay of the compressor is commonly

specified as (m + n) Δ [5]. Therefore, the straightforward

implementation of a 4:2 compressor of Figure. 2 have a long

critical path delay of 4Δ.

Figure 2. Architecture level representation of 4:2 compressors.

An alternative implementation of 4:2 compressors is derived

from the modified equations for the functions of Figure. 2.

The three outputs of the compressor are described as follows:

12132121321OUT).()().(C XXXXXXXXXXX
 (2)

 S= 21 XX 3X (3)

 Sum=S INCX 4 = 21 XX 3X CIN
 (4)

 Carry= (s 4X) INC 4XS (5)

= 21 XX 3X 4X INC +

)(4321 XXXX 4X

4:2 Compressor could be realized using by different

combinations of X-OR Gates, AND gates and MUXs

The logic level decomposition of 4:2 compressors is as given

below:

B. Binary Tree using Full adder & AND Gates

It is formed by using 3 input X-OR gates and 3 input AND

gates. The critical path of compressor is 4 X-OR gates. Figure

3 b] shows RTL schematic of Primitive Implementation of 4:2

Compressor using logic gates. The objective of our work is,

by using higher compressor minimize the propagation delay of

the gates which is also called ripple carry propagation of the

gates at the summation stage [1]

Figure 3 a) Binary Tree Implementation using logic gates.

Figure 3 b) RTL schematic of Binary tree using logic gates.

International Journal of Advanced and Innovative Research (2278-7844) / # 159 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 159

III. CIRCUIT LEVEL OPTIMIZATION

Since full adders are building blocks of 4:2 compressors, we

could improve the performance of 4:2 compressors by

Optimizing full adder blocks. Considering a full adder which

takes three equally weighted bits (X1,X2, X3) and produces a

sum-bit (Sum) as well as a carry-bit (Carry), outputs of the

full adder can be described as follows:

Sum= 21 XX 3X

 = 321321321 XXXXXXXXX + 321 XXX
 (6)

Carry= 313221 XXXXXX (7)

By taking the NOT of Carry signal, we obtain:

 carry= 313221 XXXXXX (8)

Comparing equation (6) with (8), we could find that Sum and

Carry have some parts in common, which are X1X2, X2X3

and X1X3.Therefore, we could use part of the circuit, which is

used to generate Sum signal, to generate Carry signal as well.

Figure 5 a) shows block schematic of full adder with input a, b,

and Cin and output Sum and Carry. Figure 5 b) shows RTL

schematic of full adder using logic gate.

Figure 5 a) Block Schematic of Full adder (RCA).

Figure 5 b) RTL schematic of Full adder using logic gates

IV. SIMULATION RESULT

The simulations are performed by using Modelsim in Mentor

Graphics design tool. All the circuits are targeted for FPGA

Spartan-3 (XC3S400 PQ-208). Therefore, the circuits are

designed and optimized based on this process model. All the

FPGA Circuitry is sized to achieve the fastest possible

operation frequency as well as the proper functionality. In the

test bench, each input is driven by buffered signals and each

output is loaded with buffers, which offer a realistic

simulation environment reflecting the compressor operation in

actual applications.

The average delay is the average of delays of all input data.

The worst case delay is the largest delay among all input data.

The designed 4:2 compressor is implemented using gate logic

and circuits are simulated. The simulation results’ using

implemented technique is as shown in Table. I. As shown in

tables, all the compressor circuits are simulated in terms of

delay and power consumption .The operation frequency is

maximum working frequency for each circuit, which is 95.767

MHz Simulation result indicates that 4:2 compressor designed

in gate has the best performance. Simulation result indicates

that 4:2 compressors designed in using gate logic, it reduces

the average delay and worst case delay by 44.6% logic and

55.4% route.

TABLE I

 SIMULATION RESULTS FOR 4:2 BINARY TREE.

Cell Name Average

Delay

Gate

Delay

Net

Delay

Operation

Frequency

(MHz)

Compressor

f2c [Fig.3 a]

10.42 ns 4.659 ns 5.783 ns 95.767 MHz

The primitive 4:2 compressor using gate logic is

implemented on a Field Programmable Gate Array

(FPGA).Two major CAD software tools were used; Mentor

Graphics and Xilinx 11.1 ISE tools. ModelSim is used for

simulation; Fig.6 a) shows the simulation result of primitive

4:2 compressor using gate logic. The simulation result shows

output of the proposed design with input sequence (a=0, b=0,

c=1, d=1, and Cin=1) and output will give 4:2 compressed

output (Cout =0, and Sum=1) as shown in Fig 6a).Figure 6 b)

shows data flow trough 4:2 compressor.

International Journal of Advanced and Innovative Research (2278-7844) / # 160 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 160

Figure 6. a) Simulation result of 4:2 compressors.

 Figure 6 b) Data Flow trough 4:2 compressors.

V. CONCLUSION

This paper has described various designs of 4:2 compressors

at both logic level and circuit level. The 4:2 Compressor is

implemented in domino logic and followed by the simulation

results of these circuits. The 4:2 compressors, which are

designed in mux gate domino logic, have the best performance

in terms of delay, and operation frequency compared with the

gate logic designs. By exploiting this architecture using higher

compressor for computation addition operation, the

constraints on the coefficient values, this architecture yields

extremely efficient and high speed programmable and custom

implementations.

REFERENCES

[1] K. Prasad, and K.K. Parhi, “Low-power 4-2 and 5-2 compressors,” in Proc.

 of the 35th Asilomar Conference on Signals, Systems and Computers,
 vol.I, pp. 129-133, 2001.

[2] Peng Chang Majid Ahmadi, “High speed low power 4:2 compressor cell

design,”
[3] A. Weinberger, "4:2 carry-save adder module," IBM Technical Disclosure

Bulletin. vol.23. Jan.1981

[4] A. Abedelgwad, “High speed and area efficient multiply Accumulate
(MAC) Unit for Digital signal Processing applications,” IEEE

International Symposium on Circuits and Systems, ISCAS 2007.

[5] Ayaman.A.Fayed, “A merged Multiplier Accumulator for High Speed
signal processing Applications,” IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), 2002.

[6] P.asadee, “A High-Speed Multiplication Algorithm Using Modified
Partial Product Reduction Tree.

[8] Wayne Wolf, "Modern VLSI Designer", Prentice-Hall, Upper Saddle

 River, 2002.
[9] Douglas Perry, “VHDL programming by examples” McGraw-Hill

 Publication.

International Journal of Advanced and Innovative Research (2278-7844) / # 161 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 161

