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Abstract: Pattern mining is the hard task in searching and 

matching process. It plays key role in the search engines. User 

wants their search results have to accurate and moderate. So 

that the search or matching operation must have to find all 

patterns with respect to the given pattern by the user. So we 

implemented a new method for pattern mining or matching. 

It generates all possible patterns of the given pattern. By this 

user definitely gets efficient pattern matching results. This 

method reduce more processing time and the computational 

complexity.  

I.INTRODUCTION 

Sequence mining is a topic of data 

mining concerned with finding statistically relevant 

patterns between data examples where the values are 

delivered in a sequence.
[1]

 It is usually presumed that the 

values are discrete, and thus time series mining is closely 

related, but usually considered a different activity. 

Sequence mining is a special case of structured data 

mining. There are several key traditional computational 

problems addressed within this field. These include 

building efficient databases and indexes for sequence 

information, extracting the frequently occurring patterns, 

comparing sequences for similarity, and recovering missing 

sequence members. In general, sequence mining problems 

can be classified as string mining which is typically based 

on string processing algorithms and itemset mining which 

is typically based on association rule learning[1][2]. 

In a number of sequential data mining 

applications, the goal is to discover frequently occurring 

patterns. The challenge in discovering such patterns is to 

allow for some noise in the matching process. At the heart 

of such a method is the definition of a pattern, and the 

definition of similarity between two patterns.[3][4][5] This 

definition of similarity can vary from one application to 

another. This approximate subsequence mining problem is 

of particular importance in computational biology, where 

the challenge is to detect short sequences, usually of length 

6- 15, that occur frequently in a given set of DNA or 

protein sequences. These short sequences can provide clues 

regarding the locations of so called “regulatory regions,” 

which are important repeated patterns along the biological 

sequence. The repeated occurrences of these short 

sequences are not always identical, and some copies of 

these sequences may differ from others in a few positions 

[7][8]. 

Database mining is motivated by the decision 

support problem faced by most large retail organizations. 

Progress in bar-code technology has made it possible for 

retail organizations to collect and store massive amounts of 

sales data, referred to as the basket data. A record in such 

data typically consists of the transaction date and the items 

bought in the transaction. Very often, data records also 

contain customer-id, particularly when the purchase has 

been made using a credit card or a frequent-buyer card. 

Catalog companies also collect such data using the orders 

they receive.  The problem of finding frequently occurring 

(non-contiguous) sub-sequences in large sequence 

databases has been extensively studied in previous works. 

Traditionally, B is called a subsequence of A, if B can be 

constructed by projecting out some of the elements of 

sequence A. For instance, if A is the sequence “a, b, a, c, b, 

a, c,” the sequence “a, b, b, c” is a subsequence constructed 

by choosing the first, second, fifth, and seventh elements 

from the original sequence and omitting the rest. While 

mining for frequent non-contiguous sub-sequences has 

many uses, it is not appropriate for many applications such 

as DNA and protein motif mining. A subsequence 

constructed by gluing together distant parts of the original 

sequence is not meaningful in many applications. In mining 

for motifs, we are interested in contiguous sub-sequences. 

Furthermore, previous work on non-contiguous 

subsequence models cannot easily incorporate noise 

tolerance in the way that contiguous motif models can. In 

short, subsequence mining and motif mining are different 

data mining operations, and there are distinct applications 

of each of these. This paper focuses on the contiguous 

subsequence (motif) mining problem.[9][10]. 

 

II.RELATED WORK 

A) Periodic Patterns  

 

This model of pattern is quite rigid and it fails to find 

patterns whose occurrences are asynchronous. Periodicity 

detection on time series database is an important data 

mining task and has broad applications. For example, “The 

gold price increases every weekend” is a periodic pattern. 

As mentioned above, this model is often too restrictive 

since we may fail to detect some interesting pattern if some 

of its occurrences are misaligned due to inserted noise 

events[11]. A pattern can be partially filled to enable a 

more flexible model. For instance, pattern length three 

(I1,*,*) is a partial pattern showing that the first symbol 

must be I1. The system behaviour may change over time 

and some patterns may not be present all the time. Two 

parameters, namely min-rep and max-dist, are used to 
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specify the minimum number of occurrences that is 

required within each sub-sequences and the maximum 

disturbance between any two successive sub-sequences.  

The rationale behind this is that a pattern needs to repeat 

itself at least a certain number of times to demonstrate its 

significance and periodicity. Couple of algorithms in this 

area focused on patterns for some pre-specified period 

length and several models can discover all periodic patterns 

regardless of the period length. Notice that period usually is 

a part of what we would like to mine from data. Let us look 

at an example to explain some definitions. 

 
 

Figure 1 shows matches of partial pattern (I1,*,*) that is a 

1-pattern of period 3. In this Figure, P1,P2,…, and P10 are 

ten matches of pattern (I1,*,*) and S1,S2, and S3 are three  

segments which each one forms a list of N consecutive 

matches of (I1,*,*). For example, segment S2 is consist of 5 

successive matches of this pattern. S1 and S3 are disjoint 

segments and S1 and S2 are overlapped segments. In many 

applications, overlapped segments often are not considered.   

If the value of min-rep is set to 3, then S1 and S2 

qualify as valid segments and S3 is not a valid segment. 

Two or more than two contiguous and disjoint segments 

can construct a valid subsequence provided that distance 

between any two successive valid segments does not 

exceed the parameter max-dist. For example, if the value of 

min-rep and max-dist are set to 2 and 3 respectively, both 

S1 and S3 recognized as valid subsequence whose overall 

number of repetition is 5. Given a sequence S, the 

parameters min-rep and max-dist[13][14]. 

and the maximum period length Lmax, in three phases we 

can discover the valid sub-sequences that have the most 

repetitions for each valid pattern whose period length does 

not exceed Lmax. When parameters are not set properly, 

noise may be qualified as a pattern. Though, parameter 

max-dist is employed to recognize the noises between 

segments of perfect repetition of a pattern. The following 

three phases outline algorithm for mining periodic patterns  

in brief.  The first phase: For each symbol I, the distance 

between any two occurrences of I are examined and then 

for each period l, the set of symbols whose number of times 

are at least min-rep are sent to the next phase. Since there 

are a huge number of candidates, a pruning method is 

needed to reduce it.  The second phase: In this phase, the 

single patterns (1- pattern) are generated. For each period l 

and each symbol I a candidate pattern (I,*,*,…,*) is formed 

that number of  symbol * is (l-1).  The third phase: After 

discovering the single patterns in previous phase, i-patterns 

are generated from the set of  valid (i-1)-patterns and then 

these patterns are validated.  In this phase, we can apply 

some heuristics. For example,  it is obvious that if a pattern 

is valid, then all of its generalizations are valid. Pattern 

(I1,I2,*) is a  generalization of pattern (I1,I2,I3).[15] 

B) Mining sequential patterns: 

1. Sort Phase:The database (D) is sorted, with customer-id 

as the major key and transaction-time as the minor key. 

This step implicitly converts the original transaction 

database into a database of customer sequences.  

2. ‘l’ itemset Phase:In this phase we find the set of all ‘l’ 

itemsets L. We are also simultaneously finding the set of 

all large 1-sequences, since this set is just {(l) | l € L}. The 

problem of finding large itemsets in a given set of customer 

transactions, albeit with a slightly different definition of 

support. In these papers, the support for an itemset has been 

defined as the fraction of transactions in which an itemset 

is present, whereas in the sequential pattern finding 

problem, the support is the fraction of customers who 

bought the itemset in any one of their possibly many 

transactions. The main difference is that the support count 

should be incremented only once per customer even if the 

customer buys the same set of items in two different 

transactions. 

 

Cust 

Id 

Transaction 

Time 

Items 

Bought 

1 

1 

Jan 25’ 12 

Jan 30’ 12 

30 

90 

2 

2 

2 

Jan 10’ 12 

Jan 15’ 12 

Jan 20’ 12 

10,20 

30 

40,60,70 

3 Jan 25’ 12 30,50,70 

4 

4 

4 

Jan 23’ 12 

Jan 20’ 12 

Jan 25’ 12 

30 

40,70 

90 

5 Jan 12’ 12 90 

 

3. Transformation Phase: We need to repeatedly 

determine which of a given set of large sequences are 

contained in a customer sequence. To make this test fast, 

we transform each customer sequence into an alternative 

representation. In a transformed customer sequence, each 

transaction is replaced by the set of all ‘l’ itemsets 

contained in that transaction. If a transaction does not 

contain any ‘l’ itemset, it is not retained in the transformed 

sequence. If a customer sequence does not contain any ‘l’ 

itemset, this sequence is dropped from the transformed 

database. However, it still contributes to the count of total 

number of customers. A customer se- 

quence is now represented by a list of sets of ‘l’ itemsets. 

Each set of ‘l’ itemsets is represented by (l1, l2,. . . ln), 

where li is a ‘l’ itemset. 

I1   I3   I4   I1   I1   I2   I1  I1  I4   I1  I1  I3  I1   

P3                    P5                                   P6                         P8 

S2 

S1 
S3 
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This transformed database is called DT . 

Depending on the disk availability, we can physically 

create 

this transformed database, or this transformation can be 

done on-the-y, as we read each customer sequence 

during a pass. (In our experiments, we physically created 

the transformed database.) 

For example, during the transformation of the 

customer sequence with Id 2, the trans-action (10 20) is 

dropped because it does not contain any ‘l’ itemset and the 

transaction (40 60 70) is replaced by the set of ‘l’ itemsets 

{(40), (70), (40 70)}. 

4.The Sequence phase: The general structure of the 

algorithms for the sequence phase is that they make 

multiple passes over the data. In each pass, we start with a 

seed set of large sequences. We use the seed set for 

generating 

new potentially large sequences, called candidate 

sequences. We find the support for these candidate 

sequences during the pass over the data. At the end of the 

pass, we determine which of the candidate sequences are 

actually large. These large candidates become the seed for 

the next pass. In the first pass, all 1-sequences with 

minimum support, obtained in the ‘l’ itemset phase, form 

the seed set. 

 

.Apriori Candidate Generation 

 

The apriori-generate function takes as argument Lk-1, the 

set of all large (k-1)-sequences. The function works as 

follows.  

First, join Lk-1 with  Lk-1: 

insert into Ck 

select p.litemset1 , ..., p.litemsetk-1, q.litemsetk-1 

from Lk-1 p, Lk-1 q 

Next, delete all sequences c2 belongs to Ck such that some 

(k-1)-subsequence of c is not in Lk-1. 

If this is given as input to the apriori-generate function, we 

will get the sequences shown in the second column after 

the join. After pruning out sequences whose sub-sequences 

are not in L3, the sequences shown in the third column will 

be left. 

Both the count-some algorithms have a forward 

phase, in which we find all large sequences of certain 

lengths, followed by a backward phase, where we find all 

remaining large sequences. The essential difference is in 

the procedure they use for generating candidate sequences 

during the forward phase. As we will see momentarily, 

Apriori-Some generates candidates for a pass using only 

the large sequences found in the previous pass and then 

makes a pass over the data to find their support. Dynamic-

Some generates candidates on- the-y using the large 

sequences found in the previous passes and the customer 

sequences read from the L1 = {large 1-sequences}; 

 // Result of litemset phase 

for ( k = 2; Lk-1 ≠ɸ ;; k++ ) do 

begin 

Ck = New candidates generated from Lk-1 

foreach customer-sequence c in the database do 

Increment the count of all candidates in Ck that are 

contained in c. 

Lk = Candidates in Ck with minimum support. 

end 

Answer = Maximal Sequences in Sk Lk; 

Notation In all the algorithms, Lk denotes the set of all 

large k-sequences, and Ck the set of candidate k-sequences. 

 

III.PROPOSED WORK 

 

We call our motif model the (L,M, s, k) model 

after the four parameters that determine it. L is the length 

of the motif, M is a distance matrix that is used to compute 

the similarity between two strings, s is the maximum 

distance threshold within which two strings are considered 

similar, and finally, k is the minimum support required for 

a pattern to qualify as a motif. Given, L, d, and k, a 

naive algorithm is to consider all 

possible strings of length L over the alphabet (the space of 

all models), and compute the support for each of them by 

scanning the data set. This algorithm is exponential and 

becomes infeasible with large L and d values. One might 

be tempted to improve this method by considering only 

those strings of length L that actually occur in the data set. 

However, this approach might miss motifs as the 

model string might not actually occur in the data set even 

once. To illustrate this point, suppose that the string 

ABCDEF is the true motif. Assume that we are looking for 

a (6, 2, 3) pattern, and that the instances of this pattern in 

the data set are FFCDEF, ABFFEF, and ABCDAA. Each 

instance is at a distance of 2 from the model ABCDEF, but 

the distance between any two instances is 4. If we consider 

only instances from the data set (which need not contain 

ABCDEF), then we will not find the motif. First we 

construct suffix tree means it counts number of nodes, and 

that is not restricted to a particular string is called model 

suffix tree. 

Then we can find the supports of the nodes in the 

data suffix tree. By this we can easily find that every node 

contains number of leaves and some nodes have same 

leaves. For example ABCDE and ABCDF , it contains 

same prefixes . Our algorithm does not constructs the suffix 

tree but if it needs that it will. To understand our strategy of 

pruning the model suffix tree, consider the following 

example: Assume that the data set consists of sequences 

over the alphabet {A,B,C,D,E}. The data set and the values 

of L, d, and k are specified as input. All the strings of 

length L starting with the symbol A form a subset of the 

model space.  We call this the A partition. This partition 

corresponds to all the nodes in the model suffix tree under 

the sub tree corresponding to node A. This partition is 

further divided into sub partitions with prefix AA, AB, AC, 

AD, and AE. These partitions continue on for L levels, and 

at the last level, we have only one model string for each 

partition. Suppose that we start by considering the models 
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in partition A. Assuming no mismatches are allowed, if the 

support for A is less than k, then, clearly any model that 

starts with A cannot qualify as a valid motif since there will 

be fewer than k instances of it, and it will not have the 

minimum support. Consequently, we can safely toss away 

the entire space of models starting with the symbol A. This 

step essentially prunes away the subtree corresponding to A 

in the model suffix tree. After pruning A, we proceed to 

consider the B partition. An important step here is to 

compute the support for models starting with A. This value 

is simply the number of times A occurs in the data set, and 

this value can be quickly looked up from the data suffix 

tree. 

 

FSBP (modelTree, dataTree, l, d, k) 

model = model Tree.FirstNode() 

While (model ≠ model Tree.lastmodel()) 

 Evaluate_Support (model,data Tree) 

 If ( is valid (model) print “Found model:” , model 

 Else If(model.support() < k) 

  Model Tree.prune At(model) 

 Model = Next Node (model,model Tree) 

End While 

End  

Sub Evaluate_Support (model, data Tree) 

new symbol = last symbol of model.String 

old matches = model.Parent().Matches() 

new matches = EmptyMatches() 

If (model.Parent() == root) 

 new matches = Expand_Matches (root,new 

symbol,data Tree) 

Else 

 ForEach match x in old matches 

  New matches = new matches U 

  

 Expand_Matches(x,newsymbol,data Tree) 

 

 End ForEach 

Model.Set Matches (new Matches) 

Return 

Sub Expand_Matches (x,newsymbol,data Tree) 

Let Y = Set of all single character expansions of x.String in 

data Tree 

ForEach element b in Y 

 If b’s last symbol ≠ new symbol 

  b.mismatches++ 

  If b.mismatches > max_mismatches 

   Remove b from Y 

End ForEach 

Return Y 

The list of Matches for the Model A 

 

Node Number of 

mismatches 

Count 

     A 

     B 

     C 

     D 

      E 

 

                      0 

                      1 

                      1 

                      1  

                      1 

                     

    100 

      50 

       45 

     120 

       15 

Support                      -      330 

 

 

 

 

When mismatches are allowed, computing the support of a 

(partial) model string is more complicated. Suppose 

that d = 1. When considering matches for models starting 

with A, we cannot rule out strings that start with B (or any 

other symbol), since a string starting with B could match a 

model starting with A by only differing in the first position. 

Now assume that the data suffix tree nodes at depth 1 

labeled A, B, C, D, and E have counts of 100, 50, 45, 120, 
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and 15, respectively. The possible number of strings 

starting with B that could match a model starting with A is 

simply the count of node B, namely 50. In a similar 

fashion, the count value from other nodes at most d 

mismatches away is read, and a list of potential matches for 

A is constructed as shown in Table 2. The list contains the 

node in the data suffix tree, the number of mismatches 

corresponding to this node, and the count from that node. 

For instance, node A in the data suffix tree has a count of 

100 and perfectly matches the model string (A)—we store 

this information in the list as (A, 0, 100). The total support 

for the partial model is now computed by summing up the 

individual counts. In the example for Table 2, this sum is 

330. Those nodes where the number of mismatches with 

the model being considered is greater than d are pruned 

away and not included in the list of matches. The algorithm 

then proceeds to consider the next partial model—AA. 

Observe that the list of matches for any partial model can 

be constructed incrementally using the list of matches for 

that model’s longest prefix. For instance, the list of 

matches for AC can be constructed using the list for A 

(Table 2). We take each string from the list, and extend it 

by one symbol. The first string A, for instance, can be 

extended by one symbol to AA, AB, . . . , AE. The string 

AC has 0 mismatches to itself, the remaining strings have 1 

mismatch each. The support for each of these string can be 

quickly looked up in the data suffix tree. We locate the 

model suffix tree node corresponding to A (stored in the 

list of matches). This node points to its children: AA, AB, . 

. . , AE. The support for each of them is read from the 

suffix tree, and a new list of matches is constructed for AC 

to compute its support. Similarly, when B is extended to 

length 2, all strings except BC have more than one 

mismatch with the model string AC. Therefore, only BC is 

included in the match list. The remaining nodes (C, D, and 

E) are expanded similarly. 

 

Sub Expand_Matches_lMsk (x,newsymbol, data tree) 

Let Y=Set of all single charcter expansions of x.string in 

data tree 

For Each element b in Y 

       b.distance += 

Distance_Matrix(b.lastsymbol,newsymbol) 

           If b.distance > max_distance 

  Remove b from Y 

      End forEach 

 

We take advantage of this method for 

incrementally computing the support by traversing the 

model suffix tree in the depth-first order. If L = 3, the 

partitions will be considered in the order A, AA, AAA, 

AAB, AAC, etc. At each node, the match list and the 

support for the parent node has already been computed, and 

can be used to compute the support of the current node. 

Observe that if we want to distinguish between multiple 

matches within a single sequence or matches within 

different sequences, we can simply replace the count in 

each node of the data suffix tree with the count of sequence 

separator node in its sub-tree. That is, while building the 

suffix tree, we simply store the number of distinct 

sequences the patterns occur in instead of the total count. 

This allows FLAME to easily support both models. 

The algorithm simply puts together the ideas 

described above. It starts by traversing the nodes of the 

model space in depth first order. At each node in the model 

suffix tree, the subroutine Evaluate_Support is called to 

compute the list of matches and the new support. This 

routine uses the match list from the parent node to speed up 

the computation. The routine Expand_Matches ensures that 

the number of mismatches to the model string does not 

exceed d. At any node, if FLAME discovers that the 

support is lower than k, it prunes away that subtree in the 

model suffix tree, and continues its traversal. If it finds a 

model of length L with the required support, it simply 

outputs the result. Instead of merely keeping track of the 

number of mismatches, they keep track of the substitution 

distance score. That is, for each node, the match list stores  

 
 

    
 M (xi  ,  yi  )  

where xi is the symbol from the prefix of the i 

partition, and yi is the symbol it is being matched to in the 

data set. If this distance score exceeds the preset threshold 

(s), we prune the model suffix tree at that point, and 

continue the depth-first traversal just as in the case of the 

simpler (L,d, k) model. 

 

CONCLUSION 

In paper we introduced a suffix based pattern mining 

algorithm, it works on different motifs and it also works on 

synthetic datasets. It find more accurate patterns when the 

user search. It constructs data tree based on the patterns 

available in the given data. So that finding a pattern is 

easier in small amount of time and accurate. It extract more 

matches till the mismatch occurs in the given data.  
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