
A Novel Suffix Based Pattern Mining On Sequential

Datasets
Naga Laxmi Pramoda.G

*
, Kumar Vasantha

#
,Prof. C.Mohan rao

$

*
 M.Tech Scholar,

 #
HOD,

 $
 Professor and Principal

*#$
Dept of CSE, Avanthi Institute of Engineering and Technology

Abstract: Pattern mining is the hard task in searching and

matching process. It plays key role in the search engines. User

wants their search results have to accurate and moderate. So

that the search or matching operation must have to find all

patterns with respect to the given pattern by the user. So we

implemented a new method for pattern mining or matching.

It generates all possible patterns of the given pattern. By this

user definitely gets efficient pattern matching results. This

method reduce more processing time and the computational

complexity.

I.INTRODUCTION

Sequence mining is a topic of data

mining concerned with finding statistically relevant

patterns between data examples where the values are

delivered in a sequence.
[1]

 It is usually presumed that the

values are discrete, and thus time series mining is closely

related, but usually considered a different activity.

Sequence mining is a special case of structured data

mining. There are several key traditional computational

problems addressed within this field. These include

building efficient databases and indexes for sequence

information, extracting the frequently occurring patterns,

comparing sequences for similarity, and recovering missing

sequence members. In general, sequence mining problems

can be classified as string mining which is typically based

on string processing algorithms and itemset mining which

is typically based on association rule learning[1][2].

In a number of sequential data mining

applications, the goal is to discover frequently occurring

patterns. The challenge in discovering such patterns is to

allow for some noise in the matching process. At the heart

of such a method is the definition of a pattern, and the

definition of similarity between two patterns.[3][4][5] This

definition of similarity can vary from one application to

another. This approximate subsequence mining problem is

of particular importance in computational biology, where

the challenge is to detect short sequences, usually of length

6- 15, that occur frequently in a given set of DNA or

protein sequences. These short sequences can provide clues

regarding the locations of so called “regulatory regions,”

which are important repeated patterns along the biological

sequence. The repeated occurrences of these short

sequences are not always identical, and some copies of

these sequences may differ from others in a few positions

[7][8].

Database mining is motivated by the decision

support problem faced by most large retail organizations.

Progress in bar-code technology has made it possible for

retail organizations to collect and store massive amounts of

sales data, referred to as the basket data. A record in such

data typically consists of the transaction date and the items

bought in the transaction. Very often, data records also

contain customer-id, particularly when the purchase has

been made using a credit card or a frequent-buyer card.

Catalog companies also collect such data using the orders

they receive. The problem of finding frequently occurring

(non-contiguous) sub-sequences in large sequence

databases has been extensively studied in previous works.

Traditionally, B is called a subsequence of A, if B can be

constructed by projecting out some of the elements of

sequence A. For instance, if A is the sequence “a, b, a, c, b,

a, c,” the sequence “a, b, b, c” is a subsequence constructed

by choosing the first, second, fifth, and seventh elements

from the original sequence and omitting the rest. While

mining for frequent non-contiguous sub-sequences has

many uses, it is not appropriate for many applications such

as DNA and protein motif mining. A subsequence

constructed by gluing together distant parts of the original

sequence is not meaningful in many applications. In mining

for motifs, we are interested in contiguous sub-sequences.

Furthermore, previous work on non-contiguous

subsequence models cannot easily incorporate noise

tolerance in the way that contiguous motif models can. In

short, subsequence mining and motif mining are different

data mining operations, and there are distinct applications

of each of these. This paper focuses on the contiguous

subsequence (motif) mining problem.[9][10].

II.RELATED WORK

A) Periodic Patterns

This model of pattern is quite rigid and it fails to find

patterns whose occurrences are asynchronous. Periodicity

detection on time series database is an important data

mining task and has broad applications. For example, “The

gold price increases every weekend” is a periodic pattern.

As mentioned above, this model is often too restrictive

since we may fail to detect some interesting pattern if some

of its occurrences are misaligned due to inserted noise

events[11]. A pattern can be partially filled to enable a

more flexible model. For instance, pattern length three

(I1,*,*) is a partial pattern showing that the first symbol

must be I1. The system behaviour may change over time

and some patterns may not be present all the time. Two

parameters, namely min-rep and max-dist, are used to

International Journal of Advanced and Innovative Research (2278-7844) / # 836/ Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 836

http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Sequence_mining#cite_note-1
http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/Structured_data_mining
http://en.wikipedia.org/wiki/Structured_data_mining
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Association_rule_learning

specify the minimum number of occurrences that is

required within each sub-sequences and the maximum

disturbance between any two successive sub-sequences.

The rationale behind this is that a pattern needs to repeat

itself at least a certain number of times to demonstrate its

significance and periodicity. Couple of algorithms in this

area focused on patterns for some pre-specified period

length and several models can discover all periodic patterns

regardless of the period length. Notice that period usually is

a part of what we would like to mine from data. Let us look

at an example to explain some definitions.

Figure 1 shows matches of partial pattern (I1,*,*) that is a

1-pattern of period 3. In this Figure, P1,P2,…, and P10 are

ten matches of pattern (I1,*,*) and S1,S2, and S3 are three

segments which each one forms a list of N consecutive

matches of (I1,*,*). For example, segment S2 is consist of 5

successive matches of this pattern. S1 and S3 are disjoint

segments and S1 and S2 are overlapped segments. In many

applications, overlapped segments often are not considered.

If the value of min-rep is set to 3, then S1 and S2

qualify as valid segments and S3 is not a valid segment.

Two or more than two contiguous and disjoint segments

can construct a valid subsequence provided that distance

between any two successive valid segments does not

exceed the parameter max-dist. For example, if the value of

min-rep and max-dist are set to 2 and 3 respectively, both

S1 and S3 recognized as valid subsequence whose overall

number of repetition is 5. Given a sequence S, the

parameters min-rep and max-dist[13][14].

and the maximum period length Lmax, in three phases we

can discover the valid sub-sequences that have the most

repetitions for each valid pattern whose period length does

not exceed Lmax. When parameters are not set properly,

noise may be qualified as a pattern. Though, parameter

max-dist is employed to recognize the noises between

segments of perfect repetition of a pattern. The following

three phases outline algorithm for mining periodic patterns

in brief. The first phase: For each symbol I, the distance

between any two occurrences of I are examined and then

for each period l, the set of symbols whose number of times

are at least min-rep are sent to the next phase. Since there

are a huge number of candidates, a pruning method is

needed to reduce it. The second phase: In this phase, the

single patterns (1- pattern) are generated. For each period l

and each symbol I a candidate pattern (I,*,*,…,*) is formed

that number of symbol * is (l-1). The third phase: After

discovering the single patterns in previous phase, i-patterns

are generated from the set of valid (i-1)-patterns and then

these patterns are validated. In this phase, we can apply

some heuristics. For example, it is obvious that if a pattern

is valid, then all of its generalizations are valid. Pattern

(I1,I2,*) is a generalization of pattern (I1,I2,I3).[15]

B) Mining sequential patterns:

1. Sort Phase:The database (D) is sorted, with customer-id

as the major key and transaction-time as the minor key.

This step implicitly converts the original transaction

database into a database of customer sequences.

2. ‘l’ itemset Phase:In this phase we find the set of all ‘l’

itemsets L. We are also simultaneously finding the set of

all large 1-sequences, since this set is just {(l) | l € L}. The

problem of finding large itemsets in a given set of customer

transactions, albeit with a slightly different definition of

support. In these papers, the support for an itemset has been

defined as the fraction of transactions in which an itemset

is present, whereas in the sequential pattern finding

problem, the support is the fraction of customers who

bought the itemset in any one of their possibly many

transactions. The main difference is that the support count

should be incremented only once per customer even if the

customer buys the same set of items in two different

transactions.

Cust

Id

Transaction

Time

Items

Bought

1

1

Jan 25’ 12

Jan 30’ 12

30

90

2

2

2

Jan 10’ 12

Jan 15’ 12

Jan 20’ 12

10,20

30

40,60,70

3 Jan 25’ 12 30,50,70

4

4

4

Jan 23’ 12

Jan 20’ 12

Jan 25’ 12

30

40,70

90

5 Jan 12’ 12 90

3. Transformation Phase: We need to repeatedly

determine which of a given set of large sequences are

contained in a customer sequence. To make this test fast,

we transform each customer sequence into an alternative

representation. In a transformed customer sequence, each

transaction is replaced by the set of all ‘l’ itemsets

contained in that transaction. If a transaction does not

contain any ‘l’ itemset, it is not retained in the transformed

sequence. If a customer sequence does not contain any ‘l’

itemset, this sequence is dropped from the transformed

database. However, it still contributes to the count of total

number of customers. A customer se-

quence is now represented by a list of sets of ‘l’ itemsets.

Each set of ‘l’ itemsets is represented by (l1, l2,. . . ln),

where li is a ‘l’ itemset.

I1 I3 I4 I1 I1 I2 I1 I1 I4 I1 I1 I3 I1

P3 P5 P6 P8

S2

S1
S3

International Journal of Advanced and Innovative Research (2278-7844) / # 837/ Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 837

This transformed database is called DT .

Depending on the disk availability, we can physically

create

this transformed database, or this transformation can be

done on-the-y, as we read each customer sequence

during a pass. (In our experiments, we physically created

the transformed database.)

For example, during the transformation of the

customer sequence with Id 2, the trans-action (10 20) is

dropped because it does not contain any ‘l’ itemset and the

transaction (40 60 70) is replaced by the set of ‘l’ itemsets

{(40), (70), (40 70)}.

4.The Sequence phase: The general structure of the

algorithms for the sequence phase is that they make

multiple passes over the data. In each pass, we start with a

seed set of large sequences. We use the seed set for

generating

new potentially large sequences, called candidate

sequences. We find the support for these candidate

sequences during the pass over the data. At the end of the

pass, we determine which of the candidate sequences are

actually large. These large candidates become the seed for

the next pass. In the first pass, all 1-sequences with

minimum support, obtained in the ‘l’ itemset phase, form

the seed set.

.Apriori Candidate Generation

The apriori-generate function takes as argument Lk-1, the

set of all large (k-1)-sequences. The function works as

follows.

First, join Lk-1 with Lk-1:

insert into Ck

select p.litemset1 , ..., p.litemsetk-1, q.litemsetk-1

from Lk-1 p, Lk-1 q

Next, delete all sequences c2 belongs to Ck such that some

(k-1)-subsequence of c is not in Lk-1.

If this is given as input to the apriori-generate function, we

will get the sequences shown in the second column after

the join. After pruning out sequences whose sub-sequences

are not in L3, the sequences shown in the third column will

be left.

Both the count-some algorithms have a forward

phase, in which we find all large sequences of certain

lengths, followed by a backward phase, where we find all

remaining large sequences. The essential difference is in

the procedure they use for generating candidate sequences

during the forward phase. As we will see momentarily,

Apriori-Some generates candidates for a pass using only

the large sequences found in the previous pass and then

makes a pass over the data to find their support. Dynamic-

Some generates candidates on- the-y using the large

sequences found in the previous passes and the customer

sequences read from the L1 = {large 1-sequences};

 // Result of litemset phase

for (k = 2; Lk-1 ≠ɸ ;; k++) do

begin

Ck = New candidates generated from Lk-1

foreach customer-sequence c in the database do

Increment the count of all candidates in Ck that are

contained in c.

Lk = Candidates in Ck with minimum support.

end

Answer = Maximal Sequences in Sk Lk;

Notation In all the algorithms, Lk denotes the set of all

large k-sequences, and Ck the set of candidate k-sequences.

III.PROPOSED WORK

We call our motif model the (L,M, s, k) model

after the four parameters that determine it. L is the length

of the motif, M is a distance matrix that is used to compute

the similarity between two strings, s is the maximum

distance threshold within which two strings are considered

similar, and finally, k is the minimum support required for

a pattern to qualify as a motif. Given, L, d, and k, a

naive algorithm is to consider all

possible strings of length L over the alphabet (the space of

all models), and compute the support for each of them by

scanning the data set. This algorithm is exponential and

becomes infeasible with large L and d values. One might

be tempted to improve this method by considering only

those strings of length L that actually occur in the data set.

However, this approach might miss motifs as the

model string might not actually occur in the data set even

once. To illustrate this point, suppose that the string

ABCDEF is the true motif. Assume that we are looking for

a (6, 2, 3) pattern, and that the instances of this pattern in

the data set are FFCDEF, ABFFEF, and ABCDAA. Each

instance is at a distance of 2 from the model ABCDEF, but

the distance between any two instances is 4. If we consider

only instances from the data set (which need not contain

ABCDEF), then we will not find the motif. First we

construct suffix tree means it counts number of nodes, and

that is not restricted to a particular string is called model

suffix tree.

Then we can find the supports of the nodes in the

data suffix tree. By this we can easily find that every node

contains number of leaves and some nodes have same

leaves. For example ABCDE and ABCDF , it contains

same prefixes . Our algorithm does not constructs the suffix

tree but if it needs that it will. To understand our strategy of

pruning the model suffix tree, consider the following

example: Assume that the data set consists of sequences

over the alphabet {A,B,C,D,E}. The data set and the values

of L, d, and k are specified as input. All the strings of

length L starting with the symbol A form a subset of the

model space. We call this the A partition. This partition

corresponds to all the nodes in the model suffix tree under

the sub tree corresponding to node A. This partition is

further divided into sub partitions with prefix AA, AB, AC,

AD, and AE. These partitions continue on for L levels, and

at the last level, we have only one model string for each

partition. Suppose that we start by considering the models

International Journal of Advanced and Innovative Research (2278-7844) / # 838/ Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 838

in partition A. Assuming no mismatches are allowed, if the

support for A is less than k, then, clearly any model that

starts with A cannot qualify as a valid motif since there will

be fewer than k instances of it, and it will not have the

minimum support. Consequently, we can safely toss away

the entire space of models starting with the symbol A. This

step essentially prunes away the subtree corresponding to A

in the model suffix tree. After pruning A, we proceed to

consider the B partition. An important step here is to

compute the support for models starting with A. This value

is simply the number of times A occurs in the data set, and

this value can be quickly looked up from the data suffix

tree.

FSBP (modelTree, dataTree, l, d, k)

model = model Tree.FirstNode()

While (model ≠ model Tree.lastmodel())

 Evaluate_Support (model,data Tree)

 If (is valid (model) print “Found model:” , model

 Else If(model.support() < k)

 Model Tree.prune At(model)

 Model = Next Node (model,model Tree)

End While

End

Sub Evaluate_Support (model, data Tree)

new symbol = last symbol of model.String

old matches = model.Parent().Matches()

new matches = EmptyMatches()

If (model.Parent() == root)

 new matches = Expand_Matches (root,new

symbol,data Tree)

Else

 ForEach match x in old matches

 New matches = new matches U

 Expand_Matches(x,newsymbol,data Tree)

 End ForEach

Model.Set Matches (new Matches)

Return

Sub Expand_Matches (x,newsymbol,data Tree)

Let Y = Set of all single character expansions of x.String in

data Tree

ForEach element b in Y

 If b’s last symbol ≠ new symbol

 b.mismatches++

 If b.mismatches > max_mismatches

 Remove b from Y

End ForEach

Return Y

The list of Matches for the Model A

Node Number of

mismatches

Count

 A

 B

 C

 D

 E

 0

 1

 1

 1

 1

 100

 50

 45

 120

 15

Support - 330

When mismatches are allowed, computing the support of a

(partial) model string is more complicated. Suppose

that d = 1. When considering matches for models starting

with A, we cannot rule out strings that start with B (or any

other symbol), since a string starting with B could match a

model starting with A by only differing in the first position.

Now assume that the data suffix tree nodes at depth 1

labeled A, B, C, D, and E have counts of 100, 50, 45, 120,

International Journal of Advanced and Innovative Research (2278-7844) / # 839/ Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 839

and 15, respectively. The possible number of strings

starting with B that could match a model starting with A is

simply the count of node B, namely 50. In a similar

fashion, the count value from other nodes at most d

mismatches away is read, and a list of potential matches for

A is constructed as shown in Table 2. The list contains the

node in the data suffix tree, the number of mismatches

corresponding to this node, and the count from that node.

For instance, node A in the data suffix tree has a count of

100 and perfectly matches the model string (A)—we store

this information in the list as (A, 0, 100). The total support

for the partial model is now computed by summing up the

individual counts. In the example for Table 2, this sum is

330. Those nodes where the number of mismatches with

the model being considered is greater than d are pruned

away and not included in the list of matches. The algorithm

then proceeds to consider the next partial model—AA.

Observe that the list of matches for any partial model can

be constructed incrementally using the list of matches for

that model’s longest prefix. For instance, the list of

matches for AC can be constructed using the list for A

(Table 2). We take each string from the list, and extend it

by one symbol. The first string A, for instance, can be

extended by one symbol to AA, AB, . . . , AE. The string

AC has 0 mismatches to itself, the remaining strings have 1

mismatch each. The support for each of these string can be

quickly looked up in the data suffix tree. We locate the

model suffix tree node corresponding to A (stored in the

list of matches). This node points to its children: AA, AB, .

. . , AE. The support for each of them is read from the

suffix tree, and a new list of matches is constructed for AC

to compute its support. Similarly, when B is extended to

length 2, all strings except BC have more than one

mismatch with the model string AC. Therefore, only BC is

included in the match list. The remaining nodes (C, D, and

E) are expanded similarly.

Sub Expand_Matches_lMsk (x,newsymbol, data tree)

Let Y=Set of all single charcter expansions of x.string in

data tree

For Each element b in Y

 b.distance +=

Distance_Matrix(b.lastsymbol,newsymbol)

 If b.distance > max_distance

 Remove b from Y

 End forEach

We take advantage of this method for

incrementally computing the support by traversing the

model suffix tree in the depth-first order. If L = 3, the

partitions will be considered in the order A, AA, AAA,

AAB, AAC, etc. At each node, the match list and the

support for the parent node has already been computed, and

can be used to compute the support of the current node.

Observe that if we want to distinguish between multiple

matches within a single sequence or matches within

different sequences, we can simply replace the count in

each node of the data suffix tree with the count of sequence

separator node in its sub-tree. That is, while building the

suffix tree, we simply store the number of distinct

sequences the patterns occur in instead of the total count.

This allows FLAME to easily support both models.

The algorithm simply puts together the ideas

described above. It starts by traversing the nodes of the

model space in depth first order. At each node in the model

suffix tree, the subroutine Evaluate_Support is called to

compute the list of matches and the new support. This

routine uses the match list from the parent node to speed up

the computation. The routine Expand_Matches ensures that

the number of mismatches to the model string does not

exceed d. At any node, if FLAME discovers that the

support is lower than k, it prunes away that subtree in the

model suffix tree, and continues its traversal. If it finds a

model of length L with the required support, it simply

outputs the result. Instead of merely keeping track of the

number of mismatches, they keep track of the substitution

distance score. That is, for each node, the match list stores

 M (xi , yi)

where xi is the symbol from the prefix of the i

partition, and yi is the symbol it is being matched to in the

data set. If this distance score exceeds the preset threshold

(s), we prune the model suffix tree at that point, and

continue the depth-first traversal just as in the case of the

simpler (L,d, k) model.

CONCLUSION

In paper we introduced a suffix based pattern mining

algorithm, it works on different motifs and it also works on

synthetic datasets. It find more accurate patterns when the

user search. It constructs data tree based on the patterns

available in the given data. So that finding a pattern is

easier in small amount of time and accurate. It extract more

matches till the mismatch occurs in the given data.

REFERENCES

[1] M.O. Dayhoff, R.M. Schwartz, and B. Orcutt, “A odel

forEvolutionary Changes in Proteins,” Atlas of Protein

equence and Structure, vol. 5, pp. 345-352, Nat’l

Biomedical Research Foundation,1978.

[2] S. Henikoff and J. Henikoff, “Amino Acid Substitution

Matrices from Protein Blocks,” Proc. Nat’l Academy of

Sciences USA, vol. 89, no. 22, pp. 10915-10919, 1992.

[3] R. Agrawal and R. Srikant, “Fast Algorithms for

Mining Association Rules,” Proc. Int’l Conf. Very Large

Data Bases (VLDB), pp. 487-499, 1994.

International Journal of Advanced and Innovative Research (2278-7844) / # 840/ Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 840

[4] R. Agrawal and R. Srikant, “Mining Sequential

Patterns,” Proc. 11th IEEE Int’l Conf. Data Eng. (ICDE),

pp. 3-14, 1995.

[5] M.J. Zaki, “SPADE: An Efficient Algorithm for Mining

Frequent Sequences,” Machine Learning, vol. 42, nos. 1/2,

pp. 31-60, 2001.

[6] J. Wang and J. Han, “BIDE: Efficient Mining of

Frequent Closed Sequences,” Proc. 20th IEEE Int’l Conf.

Data Eng. (ICDE), pp. 79-90, 2004.

[7] X. Yan, J. Han, and R. Afshar, “CloSpan: Mining

Closed Sequential Patterns in Large Datasets,” Proc. SIAM

Int’l Conf. Data Mining (SDM), 2003.

[8] J. Yang, W. Wang, P.S. Yu, and J. Han, “Mining Long

Sequential Patterns in a Noisy Environment,” Proc. ACM

SIGMOD, pp. 406- 417, 2002.

[9] S. Sinha and M. Tompa, “YMF: A Program for

Discovery of Novel Transcription Factor Binding Sites by

Statistical Overrepresentation,” Nucleic Acids Research,

vol. 31, no. 13, pp. 3586-3588, 2003.

[10] G. Pavesi, P. Mereghetti, G. Mauri, and G. Pesole,

“Weeder Web: Discovery of Transcription Factor Binding

Sites in a Set of Sequences From Co-Regulated Genes,”

Nucleic Acids Research, vol. 32, pp. W199-W203, 2004.

[11] E. Eskin and P.A. Pevzner, “Finding Composite

Regulatory Patterns in DNA Sequences,” Proc. 10th Int’l

Conf. Intelligent Systems for Molecular Biology (ISMB),

pp. S354-S363, 2002.

[12] J. Buhler and M. Tompa, “Finding Motifs Using

Random Projections,” J. Computational Biology, vol. 9, no.

2, pp. 225-242, 2002.

[13] G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P.

Smyth, “Rule Discovery from Time Series,” Proc. Int’l

Conf. Knowledge Discovery and Data Mining (KDD), pp.

16-22, 1998.

[14] S. Hoppner, “Discovery of Temporal Patterns—

Learning Rules about the Qualitative Behaviour of Time

Series,” Proc. Fifth European Conf. Principles and Practice

of Knowledge Discovery in Databases, pp. 192-203, 2001.

[15] P. Patel, E. Keogh, J. Lin, and S. Lonardi, “Mining

Motifs in Massive Time Series Databases,” Proc. IEEE

Int’l Conf. Data Mining (ICDM), pp. 370-377, 2002.

BIOGRAPHIES

Author 1:

 Naga Laxmi Pramoda .G pursuing M.Tech 2 nd

year Computer Science and Engineering interested in

Networking and DBMS

Author 2:

 Mr. kumar vasantha He has obtained M.Tech in

Computer Science and Technology from jawaharlal nehru

technological university Kakinada, He has published 10

papers in National and international journals his interested

areas are RDBMS,Web Technologies

Author 3:

 Dr. C. Mohan Rao, He has obtained M.Tech in

Computer Science and Technology from Andhra University

College of Engineering and awarded Ph.D by Andhra

University during 2000. He has 18 years of teaching and

research experience and guided number of M.Tech students

for their projects. He has published 23 papers in National

and international journals. He is guiding 2 research

scholars for Ph.D. He received Best Teacher award from

JNTU, Kakinada during 2009.

International Journal of Advanced and Innovative Research (2278-7844) / # 841/ Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 841

