
A Survey on Cross Site Scripting Attack

Detection

 Mr. Sudhir. S. Dhekane

 Email:sudhirdhekane1987@gmail.com

Computer dept, Terna Engineering College

 Navi Mumbai, India

Prof. V. B. Gaikwad

 Email: vb2k@rediffmail.com

Computer dept, Terna Engineering College

 Navi Mumbai, India

Abstract

In the today’s world most of the electronic

transactions, web services run via website with stateful

reliable communication by transmitting, storing, retrieving

essential data on network, client and webserver. The major

problem with such reliable communication is that they

become vulnerable to an XSS type of attack which mostly

carried out to steal essential and confidential information,

gain control of stateful communication, to change browser

settings and cause fraudulent activities for financial gain.

This paper introducing basic types of XSS attack,

the survey of the XSS detection systems to find out

advantages and disadvantages in existing XSS detection

systems and, understanding their importance with respect to

security for web applications.

 INTRODUCTION

This paper is organized in the following way. In the first section

we discussed basics of the cross site script attack (XSS). In the

second section, we studied available systems designed and

implemented for XSS attack detection with their advantages and

disadvantages. In third section we have conclude the paper with

discussion of the available systems and methods of XSS

detection.

Keywords: Cross site script (XSS)

What is XSS?

Cross-Site Scripting (XSS) attacks occur when:

1. Data input in Web application through a non trusted

source, mainly a web request.

2. The data is included in dynamic content that is sent to a

web user without being validated for malicious script.

The malicious content sent to the web browser is a piece of

JavaScript, but it may also include HTML or any other type of

code that the browser may able to execute. The variety of

attacks based on XSS is very vast, but commonly they include

transmitting confidential data like cookies or other essential

session information to the attacker, redirecting the victim to web

content controlled by the attacker, or performing other malicious

operations on the user's machine under the appearance of the

vulnerable site.

Classification of XSS Attacks

It is too difficult to categorize XSS attacks. Generally

they are categorized into two categories, stored and reflected.

There is a third, much less well known type of XSS attack called

DOM Based XSS.

Stored XSS Attacks:

These are the attacks where the injected script is permanently

stored on the targeted servers, such as in a database, in a

message forum, visitor log, comment field, etc. The injured

party then retrieves the malicious script from the server when it

requests the stored information. Stored XSS is also sometimes

called Persistent XSS or Type-I XSS. The Figure 1 showing

how this type of attack is carried out.

International Journal of Advanced and Innovative Research (2278-7844) / # 60 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 60

mailto:vb2k@rediffmail.com
https://www.owasp.org/index.php/DOM_Based_XSS

 Figure 1: Working of Stored XSS Attack [8]

Reflected XSS Attacks

These are the attacks where the injected script is reflected off

the web server, such as in an error message, search result, or any

other response that includes some or all of the input sent to the

server as part of the request. Reflected attacks are delivered to

victims via another path, such as in an e-mail message, or on

some other web site. When a user will attempt click on a

malicious link, submitting a specially crafted form, or even just

browsing to a malicious web site, the injected code travels to the

vulnerable web site, which reflects the attack back to the user’s

browser. The browser then executes the code because it assumes

that came from a reliable server. Reflected XSS is also

sometimes known as Non-Persistent or Type-II XSS. The Figure

2 showing how this type of attack is carried out.

Figure 2: Working of Reflected XSS Attack [9]

 XSS Attack Consequences

- The end result of an XSS attack is the same apart from

whether it is stored (Persistent), reflected (Non-

Persistent). The difference is in how the payload arrives

at the server.

- The most severe XSS attacks involve leak of the user’s

session cookie, which allows an attacker to take control

on user’s session and get hold of the account.

- Other injurious attacks include the disclosure of end

user documentations, installation of Trojan horse

programs, redirect the user to some other page or site,

or modify presentation of content.

- An XSS vulnerability allow an attacker to modify a

press release or news item could affect a company’s

stock price or lessen consumer confidence.

 THE PRESENT XSS DETECTION SYSTEMS

A Proposal and Implementation of XSS Automatic

Detection/Collection System By, Omar ISMAIL, Masashi

ETOH, Youki KADOBAYASHI, Suguru YAMAGUCHI [2]

Author proposed a client-side system that automatically detects

an XSS vulnerability by manipulating either request or server

response. The system also shares the indication of vulnerability

via a central repository. The purpose of the proposed system is

dual:

To protect users from XSS attacks

To inform the web servers with XSS vulnerabilities.

As the detection part, author has implemented two different

detection mechanisms, response change mode and the response

change mode.

Response Change Mode:

Fig. 3 illustrates a series of steps taken to accomplish the

detection and collection procedures in response change

Figure 3: Response Change Mode

1. Request Check

 The proxy checks whether its parameters include

special characters. If there are, the detection/collection system

will save a copy of the request in the proxy side and forward the

International Journal of Advanced and Innovative Research (2278-7844) / # 61 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 61

original request. Otherwise the system just forwards the request

or response between the clients and servers.

2. Response Check

Followed by sending the request, the server generates

its response. If the request is detected of containing the special

characters, the detection/collection proxy compares the response

message with the corresponding request message stored in the

proxy server to see whether the same special characters are still

included in the response message. If no special characters are

found, the detection/collection proxy servers simply forward the

response to the client. Otherwise, the system marks the server as

XSS vulnerable and sends the alert messages to the client.

Meanwhile, the escape encoded response message will be sent

to the client.

Request Change Mode:

Fig.4 illustrates a series of steps taken to accomplish

the detection and collection procedures in request change mode.

Every step is explained below.

Figure 4: Request Change Mode

1. Request Check

Check whether the request message containing special

characters.

2. Sending Dummy Request

If the request message contains special character, the

detection/collection server will save the copy of original request

message and then to differ parameters in request message,

random generated numbers are inserted to every parameter for

identification purpose before sending to the requested web

server.

3. Dummy Response Check

At this stage, the system investigates the server

generated response message to see whether the Web server is

XSS vulnerable. If the Web server is found vulnerable, the

information about the Web server will be send to the database.

4. Sending the Request

If the web server is XSS vulnerable, the special

characters in original request are escape encoded before sending

to the web server. Otherwise, the detection/ collection system

simply forwards the original request to the server

5. Response Check

Alert the user by embedding the alert HTML message

in the response page.

The Information Collection for XSS Vulnerability

Fig. 5 presents the system overview of the Automatic

Detection/ Collection system for XSS vulnerability. After the

proxy server detects vulnerabilities, it sends those collected

information such as host names, the parameter name, the path

name etc. to the collection database server and such that the

collected information can be shared between the proxy servers.

Figure 5: Automatic detection/collection systems for XSS

Advantages:

Their approach is an effective way to detect and collect

XSS vulnerabilities. In this paper, author has presented a user-

side proxy approach for automatically detecting and collecting

Cross-Site Scripting Vulnerability. Two different detection

modes, the response change mode and the request change mode,

are discussed and evaluated with real-world examples

respectively.

Disadvantages:

There are many challenges to be addressed, especially,

utilization of the collected XSS information in the central

database, and to make the system deployment universal.

Cross Site Scripting Attacks Detection Algorithm Based on

the Appearance Position of Characters By, Takeshi

Matsudat, Daiki Koizumi, Michio Sonoda [3]

In this paper, the Author’s proposed detection

algorithm against cross site scripting attacks by extracting an

attack feature of cross site scripting attacks by considering the

International Journal of Advanced and Innovative Research (2278-7844) / # 62 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 62

appearance position and frequency of symbols. Their proposed

algorithm learns the attack features from given attack samples.

They prepared, and find the samples for learning and testing

from various websites and books, to show the effectiveness of

their proposed XSS detection algorithm.

Their work includes following tasks:Word Extraction Algorithm

Detection Algorithm of Cross Site Scripting

Classification Rule:Calculation of important Degree of Symbols

Detection of Cross Site Scripting

Word Extraction Algorithm:

Word extraction algorithm expands the search query

when users use web search engines. This algorithm pays

concentration to the distance between sentences to look for

related word of key search query. In this algorithm, a word

nearby key word is treated as important word.

Detection Algorithm of Cross Site Scripting:

Classification Rule:

Here there focus is on the characters which are

included in cross site scripting attacks.

Calculation of important Degree of Symbols:

Here, they defined the calculation method for

calculation of the important degree of characters.

Detection of Cross Site Scripting:

Here author’s calculated the attack feature vector value

and the threshold of all possible symbols occurred in a script to

determine the XSS script.

Consequences:

As the result, the proposed detection method of

author’s was successfully detected 99.5% attack test samples

and 97.5% normal test samples

Behavior-based anomaly detection on the server side to

reduce the effectiveness of Cross Site Scripting

vulnerabilities by Jayamsakthi Shanmugam,

M.Ponnavaikko [4]

Author’s research aims to use the positive security model to

reduce the processing time and by introducing the application

level attributes. Their proposed solution comprises of four

components namely analyzer, parser, verifier and white listed

tag cluster and the interactions between them.

Proposed Solution Procedure:

At an application level they have defined the following

attributes in table 1:

Severity

Level

Character Set Encoding Maximum

No. Of

Characters

High

ISO-8895-1

Nil 20

Medium

UTF-8

Yes 3000

Low

ISO-8895-1

Yes 10000

Table 1: Application Level Attributes [4]

Following components and their interaction shown in figure

addressing the XSS vulnerability at server side the components

are:

1. Analyzer

2. Parser

3. Verifier

4. Tag Cluster (White Listed Clusters)

The following definitions are made to define the tags with

respect to the group of tag clusters and are used to form the rules

to identify the vulnerability.

Let I= {I1, I2, I3… In} be a finite set of tags in the

input. Let W = {W1, W2, W3… Wn} be the finite set of white

listed tags. {MS1, MS2, MS3… MSn} be the corresponding set

of security classes for the tag Wi to identify the attribute or the

value of the tag content to determine whether the input provided

is malicious.

Rules to conclude an input as untainted input is defined as

follows:

If Ii is not as per the application level parameters set. Ii

is untainted, only if it is a subset of { W1, W2, W3…Wn}where

Ii is the tag in the input and if security classes identify the

attribute’s value as untainted.

Figure 6 describes the flow of the system. The execution

sequence is numbered in the above diagram for better

understanding of the process. Analyzer reads application level

parameters first, and checks whether the input meets the

maximum character rule and encoding rule. Then the input is

checked for the special character existence in the input and if it

exists then it forwards the request to the parser. The parser splits

input to tokens and sends it to the verifier. The verifier accesses

the white listed cluster and checks for its vulnerability. If there

is no vulnerability detected then the verifier returns the status to

parser. The parser then returns the status to analyzer.

International Journal of Advanced and Innovative Research (2278-7844) / # 63 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 63

Figure 6: Flow of input through the Web Application [4]

Based on the status returned, analyzer either redirects the

request to the error page or forwards the request to the web

application.

Result Analysis:

Around 2500 lines of code has been developed by

author’s and also 108 unique XSS test cases are created to test

this approach. This approach is also tested in about 2000

vulnerable input data collected from various research sites and

in the white hat hackers’ site where the proof of code is

provided for XSS vulnerability. These web pages with

vulnerable input are categorized based on the severity level

parameters defined above. Out of 2000 XSS vulnerable pages

found, around 160 web sites are SSL protected banking

applications.

In this the observation is that, there is an increase in the

processing time to process a single vulnerable input request

from 0.29 to 0.33 milliseconds after the implementation of the

security mechanisms, which is a 0.04 millisecond increase per

request, which is a very minor increase in the processing time.

To process a non-vulnerable input, on an average the proposed

system takes .006 milliseconds higher than the system without

the security mechanisms implemented as the application

parameters are introduced.

The following are the advantages of this approach:

1. This approach allows tags to be entered in the web

application and at the same time provide security for

the web application.

2. The research work uses the positive security model to

reduce the processing time. In the negative security

model, the processing time of the server increases for

every new threat introduced, since the input should be

matched with the larger number of signatures as the

XSS attack surface is very high. In the authors

approach, the attack surface is minimized using the

positive security model.

The following are the Disadvantages of this approach:

1. This approach needs an updation in the white listed

cluster XML data, when a new tag needs to be

permitted. As of now the Behavior-based anomaly

detection on the server side approach does not address

all the encoding patterns,

Optimized Client Side Solution for Cross Site Scripting By

Siddharth Tiwari, Richa Bansal, Divya Bansal [5]

The solutions on server side result in considerable degradation

of web application and are often unreliable, whereas the client

side solutions result in a poor web browsing experience, there is

need of an efficient client side solution which does not degrade

the performance. The proposed system by Autho’s has designed

in order to provide effective security against the Cross Site

Scripting attack, keeping the concept of usable security with

optimized web browsing. This approach uses a three step

process, described in Fig 7.

Figure 7: A three step process to detect XSS[5]

International Journal of Advanced and Innovative Research (2278-7844) / # 64 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 64

The first step is to check for scripts tags in the input. When

the HTTP request is received, it is passed through the script

detector. It reads the application level parameters and applies the

rules on the input. First, it checks for the maximum number of

characters, and if the input exceeds the number of characters,

then the input is rejected without processing the input further.

The second condition checked by the analyzer is the existence of

special characters. This is because the scripts can only be

executed when it is embedded using the tags and special

characters. If special character exists in the input, then the input

is passed to the parser. Otherwise the request is forwarded to the

web application.

The second step is performed by an analyzer which uses both

these databases to detect vulnerability, and decision is made by

user.

The third step is above the whole system, which is performed

by a data monitoring system. The flow of data is passively

monitored by the system. The operations processing sensitive

information are marked along with the results of those

operations. If the marked data is about to be transferred over the

network, user is asked to allow or disallow the transfer based on

the information in the dialogue box provided.

Implementation and Result Analysis:

This solution was implemented using open source

Mozilla Firefox 1.5 web browser from Mozilla foundation

Security Evaluation:

The proposed solution has been tested with thousands

of malicious inputs, non vulnerable input with white listed tags

and vulnerable websites. They compared the proposed browser

with Firefox without security implemented, Microsoft’s Internet

Explorer, Apple’s Safari Web Browser and other available web

browsers on the same platform and environment. It has been

observed that there are more than 100 variants of XSS attacks

exist and the approach is tested with the data collected from

various research sites, white hat and black hat sites.

Firefox2:14%

Safari 2:17%

Implemented web Browser: 5%

Opera: 20%

IE 6 with SP2:44%

Performance Evaluation:

It is important that after the application of security by the

proposed model, the user’s web browsing experience is not

affected seriously. The proposed browser’s performance was

compared with several available browsers. The performance has

been observed by logging the time of processing. The approach

is tested on 2.0 GHz Intel Core2duo machine, with 1 GB RAM.

Each browser's speed response was logged by putting them

through a number of tests. To get unbiased results, it is

important that the internet connection speed should be uniform

during the experimentation. The page load time can be

calculated by writing a small script on a locally hosted webpage,

or freely available website load time and speed checker.

Each test was done with a default browser install, without

changing any settings.

SWAP: Mitigating XSS Attacks using a Reverse Proxy By,

Peter Wurzinger, Christian Platzer, Christian Ludl, Engin

Kirda, and Christopher Kruege [6]

In this paper, Author’s introduce SWAP (Secure Web

Application Proxy), a server-side solution for detecting and

preventing cross-site scripting attacks. SWAP comprises a

reverse proxy that intercepts all HTML responses, as well as a

modified Web browser which is utilized to detect script content.

SWAP can be deployed transparently for the client, and requires

only a simple automated transformation of the original Web

application. Using SWAP, they were able to correctly detect

exploits on several authentic vulnerabilities in popular Web

applications.

Working of SWAP:

SWAP operates on a reverse proxy, which relays all

traffic between the Web server that should be protected and its

visitors as shown in below Figure 8. The proxy forwards each

Web response, before sending it back to the client browser, to a

JavaScript detection component, in order to identify embedded

JavaScript content. In the JavaScript detection component,

SWAP puts to work a fully functional, modified Web browser,

that notifies the proxy of whether any scripts are contained in

the inspected content.

In order to differentiate between benign and malicious

JavaScript, previously to enabling the proxy with the JavaScript

detection component, the hosted Web application is modified.

All legitimate script calls in the original Web application are

encoded into unparsable identifiers, so

called script IDs, and thus, hidden from the JavaScript detection

component. Consequently, it is safe to assume that each script

that is still found must have been injected, either via the

preceding Web request (reflected XSS), or via the Web

application’s database (stored XSS).

If no scripts are found, the proxy decodes all script IDs,

effectively restoring all legitimate scripts, and delivers the

response to the client. If the JavaScript detection component, on

the other hand, detects a script, SWAP refrains from delivering

the response, but instead notifies the client of the attempted XSS

attack.

The main components of SWAP are:

1. A JavaScript detection component, which, given the

Web server’s response, is capable of determining

whether script content is present or not.

2. A reverse proxy installed in front of the Web server,

which intercepts all HTML responses from the server

and subjects them to analysis by the JavaScript

detection component.

International Journal of Advanced and Innovative Research (2278-7844) / # 65 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 65

3. A set of scripts to automatically encode/decode

scripts/script IDs.

Figure 8: Working of SWAP [6]

 Performance Evaluation:

Due to the additional requirements for processing

power introduced by SWAP, clearly, a performance detriment is

introduced, meaning that the client will experience higher

latency when requesting content from a SWAP protected Web

server, as compared to a server that does not feature SWAP

protection. SWAP adds to the latency two-fold: First, by putting

an additional stepping stone between client and server, namely

the reverse proxy, all traffic is relayed instead of a direct

transmission, and thus, takes longer to arrive at its target.

Second, and more importantly, the JavaScript detection

component effectively has to render each page before it can be

delivered to the client. We have conducted experiments to

measure the magnitude of the performance penalty inflicted by

our SWAP prototype implementation.

Advantages:

1. The proposed approach works well to detect and alert

about XSS malicious script

2. The JS detection component is able to distinguish

between benign and malicious scripts.

Disadvantages:

1. SWAP introduces performance overhead

2. SWAP is experimentally not suitable for high-

performance web services

3. In this proposed and implemented technique the

processing speed is not been considered which is a

important factor necessary to be consider

Injecting Comments to Detect JavaScript Code Injection

Attacks By, Hossain Shahriar and Mohammad

Zulkernine[7]

In this review, Author’s addresses the issues like an

injection of malicious scripts by third parties in the form of

overriding the available methods but with different

implementations, injection of bad inline functions, injection of

additional methods which may be malicious or not by

developing a server side JavaScript code injection detection

approach. They pre and postpend each legitimate JavaScript

code block with comment statements that include identical

random token then they identify the expected features of a

JavaScript code block (e.g., method call, method definition),

save the features in policies, and embed the policy information

into comments. During the deployment phase, they performed a

number of checks to detect injection attacks. These include (i)

code without comment, (ii) code with correct and duplicate

comment, and (iii) code with correct and non-duplicate

comment; however, the actual code features are not matching

with the intended features specified in a policy.

They apply the proposed approach for server side

programs implemented in Java Server Pages (JSP). They

developed a prototype tool in Java to inject JavaScript

comments and generate policies based on legitimate code

features then they had deployed the injected code detector as a

server side filter.

Evaluation:

They evaluated their approach with three real world

JSP programs.

Advantages:

-Their evaluation indicates that the proposed approach can

mitigate many types of injected JavaScript code that might

contain arbitrary and legitimate method call injection, and

method definition overriding.

-The result showed that the approach suffers from zero false

negative rates.

CONCLUSION

The first approach is an effective way to detect and collect XSS

vulnerabilities by two different detection modes, the response

change mode and the request change mode [2]. The Second

approach detected successfully 99.5% attack for real world test

samples and 97.5% normal test samples [3]. The third approach

comprises of four components namely analyzer, parser, verifier

and white listed tag cluster and the interactions between them

and the observation is that, there is an increase in the processing

time to process a single vulnerable input request from 0.29 to

0.33 milliseconds after the implementation of the security [4].

The fourth approach present mechanisms that tested with

thousands of malicious inputs, non vulnerable input with white

listed tags and vulnerable websites and compared proposed

International Journal of Advanced and Innovative Research (2278-7844) / # 66 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 66

mechanism with other types of browsers[5].In fifth approach

SWAP (Secure Web Application Proxy) the mechanism

developed to server-side solution for detecting and preventing

cross-site scripting attacks in which client will experience higher

latency when requesting content from a SWAP protected Web

server, as compared to a server that does not feature SWAP

protection, and the last approach inject comment for valied

blocks in response page and by extracting policies the

comparison is done to detect any malicious injection of a code.

References:

[1] OWASP: Cross-site Scripting (XSS) Last revision (mm/dd/yy): 09/13/2013
[2] Omar ISMAIL, Masashi ETOH, Youki KADOBAYASHI, Suguru

YAMAGUCHI,”A Proposal and Implementation of XSS Automatic

Detection/Collection System”,Proceedings of the 18th IEEE International
Conference on Advanced Information Networking and, Application, 2004

[3] Takeshi Matsudat, Daiki Koizumi, Michio Sonoda, “Cross Site Scripting

Attacks Detection Algorithm Based on the Appearance Position of Characters”

The 5th International Conference on Communications, Computers and

Applications (MIC-CCA2012); Istanbul, Turkey: 12-14 October 2012

[4] Jayamsakthi Shanmugam, M.Ponnavaikko,”Behavior-based anomaly
detection on the server side to reduce the effectiveness of Cross Site Scripting

vulnerabilities”, Third International Conference on Semantics, Knowledge and

Grid, IEEE 2007
[5] Siddharth Tiwari, Richa Bansal, Divya Bansal Optimized Client Side

Solution for Cross Site Scripting, 16th IEEE Conference On Degital Object

Identifier, 2008
[6] Peter Wurzinger, Christian Platzer, Christian Ludl, Engin Kirda, and

Christopher Kruege “ SWAP: Mitigating XSS Attacks using a Reverse Proxy”,

IEE May 19, 2009, Vancouver, Canada
[7] Hossain Shahriar and Mohammad Zulkernine, “Injecting Comments to

Detect JavaScript Code Injection Attacks”, 35th IEEE Annual Computer

Software and Applications Conference Workshops, 2011.
[8] Blind XSS:http://www.acunetix.com accessed on date: 11,Oct.2013

[9] Reflected XSS Attackstaging.arstechnica.com accessed on date: 14,Oct.2013

International Journal of Advanced and Innovative Research (2278-7844) / # 67 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 67

