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Abstract – In this paper an attempt is made to 

compare the most important parameters of the Total 

Domination and Paired Domination of simple 

undirected graphs. In the first section all the needed 

concepts and the earlier results are given. In the 

subsequent section, the proofs of the properties 

needed to prove the required inequalities are given. 

The only assumption made is that all graphs are free 

from isolated vertices. 
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I. INTRODUCTION 

A. Total Domination 

A.1. General 

 As a preliminary, in this we give the basic 

concepts of  Total Domination and Paired 

Dominations and their comparisons in the 

succeeding sections: 

 All graphs     GEGVG ,  will be simple, 

finite, and undirected. Based on the context, the 

types of the graphs to be used will be discussed, the 

vertex set and edge set of G  are respectively 

denoted by V  and E . 

A.2. Neighbourhoods 

 Let Vv , be a vertex, the neighbourhood of 

v  denoted by  vN  is defined as 

   EvwVwvN  : . The closed 

neighbourhood of v  denoted by   VN  is defined 

as      vvNvN  . Similarly the 

neighbourhood of a subset of V  say VS  

denoted by  SN  is defined as 

    SvvNwVwSN  ,/  and the 

closed neighbourhood of S  is :

    SSNSN  . 

A.3. Degree of a vertex 

 For any vertex Vv , the degree of v , 

denoted by  vd , is the number of vertices 

adjacent to v , or simply    vNvd  . The 

smallest and the largest values of   vd
 
for all 

Vv , denoted by  G
 

and  G  are 

respectively called the minimum degree and 

maximum degree of G . 

 The circumference  of a graph G , is the 

length of a largest cycle in G  and denoted by 

 Gc . A Hamiltonian path (cycle) in a graph G  

is a path (cycle) that passes through every vertex in 

V . A graph is called Hamiltonian if it contains a 

Hamilton cycle. ie if    GVGc   . 

 A connected graph G  is a graph for which 

there is a path from u  to v  (a vu   path) for 

every pair of vertices Vvu , . In general, G   is 

called k -connected  if SG  is connected for 

any VS   where kS  . The largest value of 

k  for which G  is k -connected is called the 

connectivity of G , and is denoted by  Gk . G  is 

2-connected if it is Hamiltonian. For a connected 

graph G , when SG  is not connected for 

VS  , the set is called a vertex cut of G . If 

 v  is a vertex cut of  G , then v  is called as a 

cut vertex of G . For any vertex set VS  , the 

number of components in SG  is denoted by 

 SG  . 

 The sub graph of  G  induced by the non 

empty vertex subset VS   is denoted by  SG , 

or simply by  S . 

 A subset  VD  is called a dominating set of 

a graph G  if for every ,Vv  either Dv  or v  

is adjacent to a vertex in ,D  that is   .VDN 

The minimum cardinality of a dominating set in G  

is the domination number of  G  and is denoted by 
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 G . An independent set in G  is a set of 

pairwise nonadjacent vertices, and the 

independence number of G  , denoted as  G   is 

the maximum cardinality of an independent set in 

G . A dominating set which is also an independent 

set is called an independent dominating set. The 

minimum cardinality of such a set in G  is the 

independent domination number of G , denoted  as 

 Gi . A subset D  of V  is called a total 

dominating set of a graph G  if every vertex of G  

is adjacent to a vertex in D , ie, if  DNV  . 

The minimum cardinality of a total dominating set 

in G  is the total domination number of G   

denoted as  Gt . From the definition  Gt  can 

be defined only when   0G . Since every 

independent dominating set is also a dominating set 

     GeGG ttt   2 . 

II. PAIRED DOMINATION 

 We have already the minimal size of a total 

dominating set, the total domination number as t . 

Now the maximal size of an inclusive minimal total 

dominating set , the upper total domination 

number, is denoted by t . A paired dominating set 

is a dominating set whose induced sub graph has a 

perfect matching. The minimal size of a paired 

dominating set, the paired domination number, is 

denoted by p . The maximal size of an inclusion 

wise minimal paired dominating set, the upper 

paired domination number, is denoted by p . 

III. NEW DEFINITIONS 

 Let G  be a graph. If a graph H  is an induced 

sub graph of G , then we write GH  . If H  

does not contained in G , then G  is said to be H
- free. If H is a set of graphs, then G  is said to be 

H- free if G  is H - free for every H H. A 

corona of G  is a graph obtained from G  by 

attaching a pendant vertex to each vertex of G . 

The corona of G  is denoted as  GCr . The 

complete bipartite graph 3,1K  is called the claw. In 

general, graphs of the form rK ,1  are called as 

generalized claws. The path on 3 vertices we 

denote by 3P . We observe that 2,13 KP  . For 

each 3r , the graph 
rT  is obtained from rK ,1  

by subdividing each edge exactly once
*
. The claw, 

3T  and the corona of the claw are depicted in Fig. 

1.

 

 

 

 

 

 

 

 

 

Fig. 1 3,1K , 3T  and  3,1KCr
 

 

A dominating set X  of G  is a vertex subset such 

that any vertex of  GV \ X  has a neighbour in 

X . By the definition a total dominating set is a 

dominating set X  whose induced sub graph, 

denoted by  XG , does not have isolated vertices. 

Since the graph we considered do not have isolated 

vertices, any graph has a total dominating set. An 

induced paired dominating set is a paired 

dominating set that induces a 1-regular sub graph. 

That is to say that it is an induced matching whose 

matched vertices dominate the graph. Not every 

graph has an induced paired dominating set (This is 

clear in Fig. 2 given later). 

 It is interesting to know how the parameters, in 

the two types of dominations considered, behave 

when both are compared.  

  

*  The isomorphic graphs are treated as identical since we deal only with graph invariants. The graphs here are 

finite, simple and undirected. 
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 Usually the absolute difference of two parallel 

parameters is not bounded. That is the differences 

viz: tp   , 
tp   and 

tp   can grow 

arbitrarily  a seen from  rKCr ,1 . Hence the ratios 

of the parameters viz: tp  , tp   and 

tp   are considered. 

Proposition 1: Haynes and Slater [4] have shown 

that 

    22  GG tp   and hence 

2
t

p




 in general. 

Similarly since  

      122  rTT rtrp   for each 

1r  
(1) is asymptotically sharp. 

The same result is true for tp   as in Dorbec 

etial [7]. 

Now (1) can be improved if certain sub graphs are 

forbidden.  

According to Brigham and Dutton [6], for claw- 

free graphs the relation  

 3/4tp   is true. 

We now generalize this and for claw-free graphs 

and find the bound for tp  . 

IV. RESULTS NEEDED FOR ESTABLISHING NEW 

BOUNDS 

 We need some auxillary results (AR) to 

establish the bounds. These are known results. 

AR1: 

 Let G  be a graph. Any induced sub graph H  

of G  has an induced paired dominating set iff G  

does not contain 5C ,  3KCr  or  3PCr  as 

induced sub graph [8]. 

 Here sufficient conditions for a graph to have a 

total dominating set that induces a generalized 

claw-free graph. Again if G  is  rKCr ,1 - free for 

some 3r , then G  has a total set T  such that 

 TG  is rK ,1 - free. 

AR2: 

Let G  be a graph. A matching M  of G  

is maximum iff there is no augmenting path with 

respect to M . [9] 

AR3: 

 If  G  is a k - connected rK ,1 - free graph, 

then  

 ৯      
















 GVGV

kr

k
G

2

1
,

1
min  

as in [10]   (1) 

A particular  result from AR3 is  

R1: If G  is a rK ,1 - free graph for some 3r , 

then  
৯   

|    |
 

 

 
  

Proof : Let G  be a rK ,1 - free graph for some 

3r . 

Let G  be connected. Using AR3 

৯      














 GVGV

r
G

2

1
,

1
min  

Since 3r  and   2GV (Since G  does not 

have isolated vertices) 

    





 GVGV

r 2

11
. 

Hence ৯    GV
r

G
1

 , 

and this proves the result. With the above result, we 

prove the following: 

R2: Let G  be a graph with a total dominating set 

T  such that  TG  is rK ,1 - free for some 3r . 

Then there is a paired dominating set P  with  

rT

P 2
2 . 

Proof: Let G  be a graph that has a total 

dominating set T such that  TG  is a rK ,1 - free 

graph. We assume that T  is minimal. Let M  be a 

matching of size ৯   TG  of  TG . Since  TG  

is rK ,1 - free, by R1 we have  

 
rT

M 1
    (A) 

Let TU   be the set of unmatched vertices and 

let Uu  be arbitrary. Then   uTG \  does not 

have isolated vertices, since otherwise u  would  

necessarily be matched to one of these isolated 

vertices. Since T  is a minimal total dominating set 

of G , there is a vertex set TVu |'  whose only 

neighbor  in T  is u . Otherwise  uT \  would be 

a total dominating set of G , too. We call 'u  a 

private neighbour of u . Let P  be the set obtained 

from T  by adding exactly one private neighbour 

'u  for each Uu . In  PG , each Uu  can 

then be matched to its former private neighbour 'u

International Journal of Advanced and Innovative Research (2278-7844) / # 197 / Volume 3 Issue 5

   © 2014 IJAIR. ALL RIGHTS RESERVED                                                                                  197



. Hence,  PG  has a perfect matching and is hence 

a paired dominating set of G . We observe that 

M  leaves exactly MT 2  vertices of T  

unmatched. 

That is, MTU 2 . Hence, 

 MTUTP 22  . This together 

with (A) gives 

 
rT

M

T

MT

T

P 2
2

2
2

22



 . 

R3: Let G  be a graph and let 3r  such that any 

minimal total dominating set of G  induces a rK ,1

- free graph. Then 

 
 

  rG

G

t

p 2
2 




. 

Proof: Let G  be a graph and let 3r  such that 

any minimal total dominating set of G  induces a 

rK ,1 - free graph. Let P  be a minimal paired 

dominating set of G  and M  be a perfect 

matching of  PG . Since any paired dominating 

set is a total dominating set, too, there is a minimal 

total dominating set PT  . Let 

  TGEMM '  be the restriction  of M  to 

 TG  and let TU   be the vertices of T  that 

are not matched by 'M . 

 Let us assume that 'M  is not a maximum 

matching of  TG . By the result in AR2 there is 

an augmenting path in  TG  with respect to 'M . 

Hence there is a bigger matching of  TG , say 

''M , such that the set of unmatched vertices of 

''M , denoted by 'U , is a subset of U . Let 'P  

be the set obtained from T  by adding the 

matching partner in M  of each 'Uu . Clearly 

'P  is a proper subset of P . 'P  is a dominating 

set, since 'PT  . Apart from this  'PG  has a 

perfect matching and hence a paired dominating 

set. This contradicts the minimality of P . 

 Hence 'M  is a maximum matching of  TG . 

As any minimal total dominating set of G  induces 

a rK ,1 - free graph,  TG  is also rK ,1 - free. By 

the result in R1, rTM /'  . Since UTP   

and '2 MTU  ,we have on substitution  

 T
r

P 









2
2 . Since P  is arbitrary , it 

proves the statement. 

As  a consequence of  R2 and R3 , we have the 

Proposition 2. 

Proposition 2:   Let  G  be a rK ,1 - free graph for 

some 3r . Then  

                     
 

  rG

G

t

p 2
2 




   (2) 

And this bound is sharp for each 3r . Further , 

                      
 

  rG

G

t

p 2
2 




    (3) 

based on this, we have the following results. 

R4:  If  G  is a graph with maximum degree  , 

                      
 

  


1

2
2

G

G

t

p




 (4) 

and this bound is sharp for each  . Moreover ,   

                       
 

  






1

2
2

G

G

t

p
   (5) 

Here (3) and (5) are not sharp possibly. 

Proof :  Let  G  be a rK ,1 - free graph for some  

3r . 

By R3, (3) is true. 

             We have now to prove (2). For every total 

dominating set T ,  TG  is also rK ,1 - free. 

Hence if T  is a total dominating set of  size 

 Gt ,   R2  gives a paired dominating set P  of 

size at most    Gr t/22 . Thus  

                          

 

    rG

P

G

G

tt

p 2
2 




                                

To see that (2) is sharp for each r , we see that 

1rT  is  rK ,1  - free ,     121  rTrp  and 

  rTrt 1 .  Dividing  and after 

simplification, we have 

                          
 
  rT

T

rt

rp 2
2

1

1









 (5 a) 

since the proof of  (4) is direct from the result in 

Proposition 2, we  proceed to its sharpness. When , 

1 , the case is obvious. For 2 , observe 

that T  attains the bound. Finally (6) completes 

the proof.  

Proposition 3:  

 Let  G  be a  rTC ,5 - free graph for 

some 3r . Then  
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 

  rG

G

t

p 2
2 




  (6) 

and 

                             
 

  rG

G

t

p 2
2 




  ,       (7) 

both the bounds are sharp for each 3r . 

 For the proof of this we need the 

following result in R5.         

R5: Let  G  be a  rTC ,5 - free graph for some 

3r . Then the sub graph induced by any minimal 

total dominating set of G  is rK ,1 - free. 

 Proof : Let G  be a  rTC ,5 - free graph for 

some 3r  and let T  be a minimal total 

dominating set of  G . If we assume that  TG  is 

not rK ,1 - free. That is, there is a subset TS   

with    .,1 rKSG  Let x  be the dominating 

vertex of rK ,1 and let rsss ,...,, 21  be the 

pendant vertices of the rK ,1 . Since  T  is a 

minimal total dominating set , each vertex 

 xSsi \   has a neighbour Svi   such that 

   ii sSvN  . If there are some 

rji 1  such that iv  is adjacent to jv , 

then 5],,,,[ CvsvsxG jjii  , a contradiction 

to the assumption on G . Hence , 

 rivi 1,  is a stable set. Thus , 

   ri TrivSG  1:  , a 

contradiction to the  assumption on G . 

Proof of proposition 3 :  Let G  be a  rTC ,5 - 

free graph for some 3r . By R4,  (7) is true.

       

             Now we prove (6). R5 shows that for every 

minimal total dominating set  TGT ,  is rK ,1 - 

free. The rest is analogous to the proof of 

Proposition 2.  

Sharpness is attained by   :1,1 rKCr  we 

observe 

that 

      221,11,1   rKCrKCr rprp  

where as   

      .1,11,1 rKCrKCr rtrt    

Proposition 4: 

Let G   be a graph. The following statements are 

equivalent: 

(i)Any induced sub graph H of G  has an induced 

paired dominating set. 

(ii) max   1)(  HH tp  

(iii) G  is     335 ,, PCrKCrC - free 

               The forbidden sub graphs of proposition 4 

are displayed below in Fig 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 5C ,  3KCr and  3PCr  

To prove the proposition 4 we need the following : 

R6: For any G  , 

  

  

  
22 

 GCr

GCr

t

p
  
৯   

|    |
 

 (8) 

In particular, for any r , 

  
   1

2
2

,1

,1




 rKCr

KCr

rt

rp
  (9) 

Proof of R6: Let G  be a graph. In  1  it is shown 

that  

     22  GVGCrp ৯   . 
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    GVGCrt  . These two 

facts leads to (8). The validity of (9) follows from 

(8), ৯ 1)( ,1 rK and 1)( ,1  rKV r . 

Apart from this , we have 

  

  

  

   3

4

)(

)(

3

3

3

3

5

5








 PCr

PCr

KCr

KCr

C

C

t

p

t

p

t

p 

 

 (10) 

Proof of  Proposition 4: By AR1, conditions (ii) 

and (iii) are equivalent.  

Now let G  be a graph, to see that 

condition 1 implies condition 2, assume that any 

induced sub graph H of  G  has an induced paired 

dominating set. Hence, H  has a paired 

dominating set which is a minimal total dominating 

set. Thus )()( HH tp  . By (10), any 

graph that contains    335 ,, PCrKCrC  as 

induced sub graph does not meet condition (ii). 

Hence condition (ii) implies condition (iii) and this 

completes the proof.  

Proposition 5 deals with the ratio tp  . It 

completely determines the maximal value of the 

ratio tp   taken over the induced sub graphs of 

a graph. Also , it provides a complete list of  

possible values and gives a finite forbidden sub 

graph characterization for each value. 

Proposition 5:    Let G  be a graph and let 

   freeKCrisGr r  ,1:min,2max

       
(11) 

then  

 

 

  



























otherwise

freeKCrCisGif

H

H

t

p

GH

,
2

2,
3

4
max

,,
2

2

max

35





(12)                  

The possible values of   )()(max HH tp
GH




  

this proposition 5 are given in Table 1.

 

 

TABLE 1 

THE VALUES OF 
 
 H

H

t

p

GH 


max PROVIDED BY PROPOSITION 5 

 

Property of Graph G     HH tp
GH




max  

    335 ,, PCrKCrC free 

 3,1KCr free , not      335 ,, PCrKCrC free 

 4,1KCr free , but    GKCr 3,1  

 5,1KCr  free , but    GKCr 4,1  

 6,1KCr  free , but    GKCr 5,1  

 7,1KCr  free , but    GKCr 6,1  

 rKCr ,1  free , but    GKCr r 1,1  

1 

4/3 

3/2 

8/5 

5/3 

12/7 

.. 

2-2/r 

 

As a consequence of this proposition 5, we have 

the following bounds: 

R7: Let  G  be a  rKCr ,1  free graph  for some  

3r , then 

 

  rG

G

t

p 2
2





 

 (13) 

           This bound is sharp for each 3r  

           In particular , we obtain 

R8: Let G  be connected graph with maximum 

degree 2  that is not isomorphic to  5C . Then   

 

  




2
2

G

G

t

p

 

(14) 

              This bound is sharp for each 2 . 

Proof of proposition 5:  (Combining R2 and 

Proposition 5 and 9 , we get Proposition 5) 

              Let  G  be a graph and   be as defined in 

(11) 

              First assume that 2 ie G  is 

 3PCr  free 

International Journal of Advanced and Innovative Research (2278-7844) / # 200 / Volume 3 Issue 5

   © 2014 IJAIR. ALL RIGHTS RESERVED                                                                                  200



              Again assume that  G  is 

  35 , KCrC free. Then by Proposition 4 , 

proved, 

   HH tp 
 
holds for any induced 

sub graph H  of  G . Hence, (12) holds in this 

case. 

             We again assume that G  is not  

  35 , KCrC free 

By (10) , 

 

 

  3

4
max 

 H

H

t

p

GH


  (15) 

Since ,2 G  is  2,1KCr free by definition 

of  . Now let H  be any induced sub graph of G
. In particular,  3,1KCrHi free. Hence by 

proposition 9, H  has a minimal total dominating 

set T  such that  TG  is 3,1K  free. By R2, 

H  has a paired dominating set with 3/4TP

. 

Hence , 

 

  3

4


 T

P

H

H

t

p
  (16) 

Combining (15) and  (16) , we get 

 
  3

4
max 

 H

H

t

p

GH


; which is the 

desired equality (12) for the case when 2 . 

Now assume that 3 . Then, G  is not  

 2,1KCr -free and hence (12) gives 

 

  3

4
max 

 H

H

t

p

GH


 

For completing the proof, we have prove that 

 
  

 2
2max 

 H

H

t

p

GH
 

  (17) 

 By definition of  , G  is  ,1KCr - free. 

Let H  be any induced sub graph of G . Then H  

is also  rKCr ,1  - free . Hence by Proposition 9, 

H  has a minimal total dominating set T  such that 

 TG  is ,1K - free. By R2, H  has a paired 

dominating set P  with 


2
2 

T

P
. Hence, 

   



2

2  HH t  and hence 

 
  

 2
2max 

 H

H

t

p

GH
 (18) 

On the other hand, G  contains  1,1 KCr  as 

induced sub graph. R5 gives 

                   

      .
2

2/ 1,11,1


    KCrKCr tp

 Hence 

                    
 

  

 2
2max 

 H

H

t

p

GH
   (19) 

Now (18) and (19) give (17). This completes the 

proof. 

Proof of R7 : Proposition 5 gives (13) . sharpness 

is obtained by  1,1 rKCr , as R6 shows. 

Proof of R8 : Let G  be a connected graph of 

maximum degree 2 that is isomorphic to 5C . 

If 2  , G   is a path of length at least 2 or a 

cycle that is not 5C  and hence (14) holds by 

Proposition 4. Sharpness is obtained by 3P  , since 

  23 Pp . If 3 , G  is  ,1KCr  -  free.  

R7 then provides (14). Sharpness is obtained by 

 1,1 KCr  , as R6 shows. 

V. CONCLUSION 

  In this work a comparison is made on the most 

important parameters of the Total Domination and 

Paired Domination of simple undirected graphs. All 

the needed concepts and the earlier results are 

discussed. The proofs of the properties needed to 

prove the required inequalities are describbed. 
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