

Chameleon: A Load Balancing Model For Public

Cloud

Abdul Jaleef p k
#1

, P Sivaprakash
*2

,D Sumathi
 @3

#1
Department of Computer Science and Engineering, PPGIT, Coimbatore, Tamilnadu, India

1

*2
Department of Computer Science and Engineering, PPGIT, Coimbatore, Tamilnadu, India

2

@3
Department of Computer Science and Engineering, PPGIT, Coimbatore, Tamilnadu, India

3

1jaleefpk@gmail.com

2sivaprakash04@gmail.com
3
sumathi.cloud73@gmail.com

Abstract: The initial resistance to public cloud has begun to

lesson and customers are beginning to realize its efficiencies

and economic advantages it can provide. As the public

confidence increasing end user spending on public cloud

services are growing rapidly. to uphold the public confidence

there is a strong need to address the issues in cloud

computing. Load balancing is one of the central issues in

cloud computing, a better load balancing mechanism will be

the solution for almost issues in cloud computing. A good

load balancing makes cloud computing more efficient and

improves user satisfaction. Here introducing a new load

balancing technique inspired from chameleon color

changing behavior for load balancing which aggregate and

use different type strategy based on the situation.

Keywords--- load balancing model; public cloud; cloud

partition; game theory; chameleons load balancing model.

I. INTRODUCTION

Cloud computing, a framework for enabling

convenient, and on-demand network access to a shared

pool of computing resources is emerging as a new

paradigm of large-scale distributed computing. It has

widely been adopted by the industry, though there are

many existing issues like Load Balancing, Virtual

Machine Migration, Server Consolidation, Energy

Management, etc. that are not fully addressed . Central to

these issues load balancing a crucial one to solve. load

balancing is a mechanism to distribute the dynamic

workload evenly to all the nodes in the whole cloud to

achieve a high user satisfaction and resource utilization

ratio. With the increasing popularity of cloud computing,

the amount of processing that is being done in the clouds

is surging drastically. As the requests of the clients can be

random to the nodes they can vary in quantity and thus

the load on each node can also vary. Therefore, every

node in a cloud can be unevenly loaded of tasks according

to the amount of work requested by the clients. This

phenomenon can drastically reduce the working

efficiency of the cloud.

According to the global research firm Gartner, the global

public cloud services market is expected to increase from

$111 billion in 2012 to $131 billion worldwide in 2013.

To maintain the performance and user satisfaction there is

a strong need to address the issues in public cloud. Load

balancing in cloud computing systems is one of the main

issues. Always a distributed solution is required. Because

Since the job arrival pattern is not predictable and the

capacities of each node in the cloud differ, and it is not

always practically feasible or cost efficient to maintain

one or more idle services just as to fulfil the required

demands. For load balancing problem, workload control

is crucial to improve system performance and maintain

stability. A good load balancing mechanism has to

distribute the dynamic local workload evenly across all

the nodes in the whole cloud to avoid a situation where

some nodes are heavily loaded while others are idle or

doing little work.

There are several cloud computing categories; the load

balancing model given in this paper is aimed at the public

cloud which has numerous nodes with distributed

computing resources in many different geographic

locations. Thus, this model divides the public cloud into

several cloud partitions. When the environment is very

large and complex, these divisions simplify the load

balancing. The model presented here is inspired from

chameleons color changing behavior which changes its

behavior based on the situation and chooses the best load

balancing strategy based on situation. The rest of the

paper discuss about the related works and the proposed

system.

II. RELATED WORK

Load balancing is one of the central issues in cloud

computing, a better load balancing mechanism will be the

solution for almost issues in cloud computing. Cloud

computing is efficient and scalable but maintaining the

stability of processing so many jobs in the cloud

computing environment is a very complex problem. Load

balancing schemes depending on whether the system

dynamics are important can be either static or dynamic.

Static schemes do not use the system information and are

 © 2014 IJAIR. ALL RIGHTS RESERVED 136

International Journal of Advanced and Innovative Research (2278-7844) / # 136 / Volume 3 Issue 5

mailto:jaleefpk@gmail.com
mailto:sivaprakash04@gmail.com
mailto:sumathi.cloud73@gmail.com

less complex while dynamic schemes will bring

additional costs for the system but can change as the

system status changes. A dynamic scheme is used here for

its flexibility.

The existing load balancing method for cloud computing

are surveyed and compared in [16]. Each particular

method has advantage in a particular area but not in all

situations. In This paper discussing a comparative study

of three distributed load-balancing algorithms for Cloud

computing scenarios and proposing a new cloud load

balancing model.

A. HoneybeeForagingBehavior-M.Randlesetal.[15]

investigated decentralized honeybee-based load

balancing technique that is a nature-inspired

algorithm for self-organization. It achieves global

load balancing through local server actions.

Performance of the system is enhanced with

increased sys-tem diversity but throughput is not

increased with an increase in system size. It is best

suited for the conditions where the diverse population

of service types is required.

B. Biased Random Sampling- M. Randles et al. [15]

investigated a distributed and scalable load balancing

approach that uses random sampling of the system

domain to achieve self-organization thus balancing

the load across all nodes of the system. The

performance of the system is improved with high and

similar population of resources thus resulting in an

in-creased throughput by effectively utilizing the

increased sys-tem resources. It is degraded with an

increase in population diversity.

C. Active Clustering- M. Randles et al. [15] investigated

a self-aggregation load balancing technique that is a

self-aggregation algorithm to optimize job

assignments by connecting similar services using

local re-wiring. The performance of the system is

enhanced with high resources thereby in-creasing the

throughput by using these resources effectively. It is

degraded with an increase in system diversity. The

honeybee-algorithm performs consistently well as

system diversity increases. However, despite

performing better with high resources and low

diversity, both the random sampling walk and active

clustering degrade as system diversity increases. The

honeybee algorithm again performs consistently, but

does not increase throughput in line with system size.

However, the other approaches are able to utilize the

increased system resources more effectively to

increase throughput.

The results indicate that the honeybee-based load-

balancing approach gives better performance when a

diverse population of service types is required. Secondly,

results indicate that the random sampling walk performs

better in conforming, similar populations, and quickly

degrades as the population diversity increases. It is not

known how to select appropriate balancing techniques for

given applications that will provide a suitable

configuration for the application – and provide it in a

timely manner. The combination of algorithms is crucial

to this process.

III. SYSTEM MODEL

There are several cloud computing categories with this

work focused on a public cloud. A public cloud is based

on the standard cloud computing model, with service

provided by a service provider [11]. A large public cloud

will include many nodes and the nodes in different

geographical locations. Cloud partitioning is used to

manage this large cloud. A cloud partition is a subarea of

the public cloud with divisions based on the geographic

locations.

This load balancing model is inspired from chameleon

colour changing behaviour. Where work load are

controlled at the balancer. jobs goes to the balancer where

the jobs are located then balancer act as low level

balancer or high level balancer depending on the status of

the partition.

Cloud partitioning is used to manage the large cloud

which includes many nodes and the nodes are in different

geographical locations. A cloud partition or management

region is a subarea of the public cloud with divisions

based on the geographic locations.

A node in each management region is chosen as the

partition balancer, each balancer connect with many of the

other balancers of a CSP according to the information get

from the CSP. A load can add to or remove from the

management region; also, the selection of balancer node is

not a permanent thing but a new head node can be elected

if the previous node stops functioning properly due to

some inevitable circumstances. The balancer node is

chosen in such a way that it has the most number of

neighbouring nodes. The balancers in each partition

gather the status information from every node and then

choose the right strategy to distribute the jobs.

When a job arrives at partition where job is located the

balancer node of that particular partition act as low-level

balancer or high-level balancer depending on the

location’s status. If the status is idle or normal the

balancer node act as low-level balancer and the job is

handled locally using appropriate strategy. If the status is

heavy then it acts as high-level balancer which assigns the

job to other partition using three criteria.

Fig.1. load balancing based on partition

IV. CHAMELEON LOAD BALANCING

This model is inspired from behavior of chameleons

which change colour to reflect their moods. By doing so,

they send social signals to other chameleons. For example,

darker colours tend to mean a chameleon is angry. Lighter

colours might be used to attract mates. Some chameleons

also change colours to help their bodies adjust to changes

 © 2014 IJAIR. ALL RIGHTS RESERVED 137

International Journal of Advanced and Innovative Research (2278-7844) / # 137 / Volume 3 Issue 5

in temperature or light. When a chameleon wants to

convey a particular mood or message, its brain sends a

message to its chromatophores, which then move

pigments around to change the chameleon’s colour.This

biologically-inspired technique is used here for load

balancing by aggregating different strategies based on the

condition of the nodes and communicating with other

partition balancers.

A public cloud is based on the standard cloud

computing model, with service provided by a service

provider [11]. A large public cloud will include many

nodes and the nodes in different geographical locations.

We can see these nodes as chameleons. Where the

chameleon’s changes its color to reflect its moods the

nodes changes its status to reflects its load.

The first task is to define the load degree of each node.

The node load degree is related to various static

parameters and dynamic parameters. The static

parameters include the number of CPU’s, the CPU

processing speeds, the memory size, etc. Dynamic

parameters are the memory utilization ratio, the CPU

utilization ratio, the network bandwidth, etc.

Step 1 Define a load parameter set: F= {F1.F2,.....,Fm}

with each parameter being

either static or dynamic. m represents the total number of

the parameters.

Step 2 Compute the load degree as:

 Load_degree (N) = ∑

 ∑
 are weights that may differ for different

kinds of jobs. N represents the current node.

Step 3 Define evaluation benchmarks. Calculate the

average cloud partition degree from the node load degree

statistics as:

∑

The bench mark Load_degreehigh is then set for different

situations based on the Load_degreeavg.

Step 4 Three nodes load status levels are then defined as:

Idle When Load_degree(N)=0;there is no job being

processed by this node so the status is charged to Idle.

Normal For 0 <Load_degree(N) Load_degreehigh, the

node is normal and it can process other jobs.

Overloaded When Load_degreehigh Load_degree(N),

the node is not available and can not receive jobs until it

returns to the normal.

In this way the load degrees are calculated and the status

is changes according to the load degree. A node in each

management region is chosen as the partition balancer,

each balancer connect with many of the other balancers of

a CSP according to the information get from the CSP.

The load balancer uses the suitable strategy to assign the

jobs. The load balancer also changes its status according

to the partitions load degree as the chameleons uses

different color to indicate its mood and for fine processing

the load balancer uses different strategies to suit the

condition of the system. Therefore, the current model

integrates several methods and switches between the load

balance methods based on the system status.

The cloud partition status can be divided into three types:

(1) Idle: When the percentage of idle nodes exceeds α,

change to idle status.

(2) Normal: When the percentage of the normal nodes

exceeds β, change to normal load status.

(3) Overload: When the percentage of the overloaded

nodes exceeds γ, change to overloaded status.

The parameters α, β and γ are set by the cloud partition

balancers. Based on the status the balancer behaves

differently by using different strategy. A relatively simple

method can be used for the partition idle state with a more

complex method for the normal state. The load balancers

then switch methods as the status changes. Here, the idle

status uses an improved Round Robin algorithm while the

normal status uses a game theory based load balancing

strategy.

A. Load balance strategy for the idle status:

When the cloud partition is idle, many computing

resources are available and relatively few jobs are arriving.

In this situation, this cloud partition has the ability to

process jobs as quickly as possible so a simple load

balancing method can be used. There are many simple

load balance algorithm methods such as the Random

algorithm, the Weight Round Robin, and the Dynamic

Round Robin [12]. The Round Robin algorithm is used

here for its simplicity.

The Round Robin algorithm is one of the simplest

load balancing algorithms, which passes each new request

to the next server in the queue. The algorithm does not

record the status of each connection so it has no status

information. In the regular Round Robin Algorithm, every

node has an equal opportunity to be chosen. However, in

a public cloud, the configuration and the performance of

each node will be not the same; thus, this method may

overload some nodes. Thus, an improved Round Robin

algorithm is used, which called ―Round Robin based on

the load degree evaluation‖.

The algorithm is still fairly simple. Before the Round

Robin step, the nodes in the load balancing table are

ordered based on the load degree from the lowest to the

highest. The system builds a circular queue and walks

through the queue again and again. Jobs will then be

assigned to nodes with low load degrees. The node order

will be changed when the balancer refreshes the Load

Status Table.

B. Load balancing strategy for the normal status:

 When the cloud partition is normal, jobs are arriving

much faster than in the idle state and the situation is far

more complex, so a different strategy is used for the load

balancing. Each user wants his jobs completed in the

shortest time, so the public cloud needs a method that can

complete the jobs of all users with reasonable response

time. Penmatsa and Chronopoulos[13] proposed a static

load balancing strategy based on game theory for

distributed systems. And this work provides us with a new

review of the load balance problem in the cloud

environment. As an implementation of distributed system,

the load balancing in the cloud computing environment

can be viewed as a game.

Game theory has non-cooperative games and

cooperative games. In cooperative games, the decision

makers eventually come to an agreement which is called a

binding agreement. Each decision maker decides by

comparing notes with each other’s. In non-cooperative

games, each decision maker makes decisions only for his

own benefit. The system then reaches the Nash

equilibrium, where each decision maker makes the

optimized decision. The Nash equilibrium is when each

 © 2014 IJAIR. ALL RIGHTS RESERVED 138

International Journal of Advanced and Innovative Research (2278-7844) / # 138 / Volume 3 Issue 5

player in the game has chosen a strategy and no player

can benefit by changing his or her strategy while the other

players’ strategies remain unchanged. There have been

many studies in using game theory for the load balancing.

Grosu et al.[14] proposed a load balancing strategy based

on game theory for the distributed systems as a non-

cooperative game using the distributed structure. They

compared this algorithm with other traditional methods to

show that their algorithm was less complexity with better

performance. Aote and Kharat[15] gave a dynamic load-

balancing model based on game theory. This model is

related on the dynamic load status of the system with the

users being the decision makers in a non-cooperative

game. Since the grid computing and cloud computing

environments are also distributed system, these

algorithms can also be used in grid computing and cloud

computing environments. Previous studies have shown

that the load balancing strategy for a cloud partition in the

normal load status can be viewed as a non-cooperative

game, as described here.

The players in the game are the nodes and the jobs.

Suppose there are n nodes in the current cloud partition

with N jobs arriving,

 Processing ability of each node, i=1,....,n

 Time spending of each job

 = ∑

 : Time spent by the entire cloud partition

 ∑

 : Fraction of job j that assigned to node i ∑

In this model, the most important step is finding the

appropriate value of Sji. The current model uses the

method called ―the best reply‖ to calculate Sji of each

node, with a greedy algorithm then used to calculate Sji

for all nodes. This procedure gives the Nash equilibrium

to minimize the response time of each job. The strategy

then changes as the node’s statuses change.

C. Load balancing strategy for overloaded status:

When the partition status is heavy then the balancer

switch the load to another partition. Here the balancer

uses three criteria, Computing Capacity with Neighbours,

Distance and Reputation. The balancer node of each area

connected with many other balancer nodes so that it

checks the status of each partition and if it is not

overloaded then uses the following three criteria to select

the best partition.

Computing Capacity with Neighbours (CCN): Assuming

that each balancer knows the number, CPU power and

load of the overall nodes in its corresponding area, it can

easily obtain the Computing Capacity (CC) of an area. If

we assume that balancers can assign jobs to their

neighbouring areas, we can also consider the computing

capacity of these areas. We take this feature into account,

defining the CCN metric of one area i with Ki neighbours

as

 ∑

The parameter allows us to define the relative importance

of the local area information and the one from the

neighbours in each CC calculation. Te larger the, the more

tasks are assigned to the local area and fewer to the

neighbouring ones, and vice versa. This parameter

governs the amount of load distributed to the powerful

areas. The flow of tasks between areas increases with (1-

α).

Distance: Every balancer has an attribute called Mass

Centre, which represents the area’s degree of dispersion.

The lower the MC, the more dispersed the nodes in the

area are and vice versa. MC is defined as the weighted

average, based on the Computing Capacity, of the relative

position of the workers in an area. This means the

distance of a powerful node will have more influence on

the area’s MC than the distance of a user with a low CC.

The MC is defined formally as

∑

∑

Where distmax is the maximum distance between the

balancers and the furthest worker in its area, distj

represents the distance between the balancer and the

nodes j and Wi is the number of nodes of balancer i.

The Reputation (R): of a balancer i (Ri) is the

probability of a successful service invocation by such a

balancer. Formally, reputation is defined as

Where STi is the number of successfully executed tasks

assigned by balancer i and TTi is the total number of

tasks assigned by the same balancer.

The scheduling procedure is based on a metric, called

the scheduling criteria (V). As we will see below, it is

used to spread the tasks around the high level, which is

made up of interconnected managers. The formal

definition of the scheduling criteria of a balancer i, Vi, is

as follows:

 (

) (

)

Where . The weight assigned to each

β term depends on the job attributes. In fine-grained jobs,

β1 would be quite important, as would be β2 for course-

grained jobs and β3 to guarantee certain QoS and reduce

the impact of unstable nodes on job execution times.

V. EXPERIMENTAL RESULTS

Fig 2 a) performance response time comparison

 © 2014 IJAIR. ALL RIGHTS RESERVED 139

International Journal of Advanced and Innovative Research (2278-7844) / # 139 / Volume 3 Issue 5

Fig 2b) throughput comparison

Fig. 2. Comparison between fifo,game theory and CLD (a)

Response Time (b) Throughput ,With switch mechanism

in public cloud, we can achieve effective load balancing

for improved performance. Load balancer with switch

mechanism uses different strategies in different situations

to have an optimal utilization of virtualized resources.

This load balance model for public cloud ensures

improved performance , availability and responsiveness.

VI. CONCLUSION

The load balancing model presented here is aimed at the

public cloud which has numerous nodes with distributed

computing resources in many different geographic

locations. Thus, this model divides the public cloud into

several cloud partitions. When the environment is very

large and complex, these divisions simplify the load

balancing. we are introduced a new balancing mechanism

inspired from chameleons color changing behavior which

aggregate different strategy and use these strategy based

on the situations. With switch mechanism in public cloud,

we can achieve effective load balancing for improved

performance.

Load balancer with switch mechanism uses different

strategies in different situations to have an optimal

utilization of virtualized resources. This load balance

model for public cloud ensures availability and

responsiveness. This also improves performance and

reduces total cost.

VII. FUTURE WORK

1. Cloud division rules

Nodes in a same cluster may be far from other nodes or

there will be some clusters in the same geographical area

that are still apart. Thus, the framework will need

different cloud division methodology

2. Better load status evaluation.

A good algorithm is needed to set Load_degreehigh and

Load_degreelow.

3. load balancing strategies. Experimenting new strategies

may give good results.

 REFERENCES

[1] C.Schroth and T. Janner, (2007). Web 2.0 and SOA: Converging

Concepts Enabling the Internet of Services. IEEE IT Professional
Vol.9, No.3 (pp.36-41), June 2007.

[2] P.A Laplante, Zhang Jia and J.Voas, ―What's in a Name?

Distinguishing between SaaS and SOA," IT Professional , vol.10,
no.3, pp.46-50, May-June 2008

[3] W.M.P. van der Aalst, Don't go with the flow: Web services

composition standards exposed. IEEE Intelligent Systems,
18(1):72-76, 2003.

[4] R. Ruggaber, Internet of Services SAP Research Vision. In 16th

IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE 2007), pp:

3.

[5] G. Briscoe, P. De Wilde (2008) Digital Ecosystems: Optimisation
by a Distributed Intelligence. In Proceedings of the 2nd IEEE

International Conference on Digital Ecosystems and Technologies,

Phitsanulok, Thailand.
[6] R. Sterritt (2005) Autonomic Computing. Innovations in Systems

and Software Engineering, 1(1), pp: 79–88.

[7] Martin Randles, A. Taleb-Bendiab and David Lamb, Scalable
Self- Governance Using Service Communities as Ambients. In

Proceedings of the IEEE Workshop on Software and Services

Maintenance and Management (SSMM 2009) within the 4th
IEEE Congress on Services, IEEE SERVICES-I 2009 - July 6-10,

Los Angeles, CA (To appear).

[8] IBM. IBM Introduces Ready to Use Cloud Computing. IBM
Press Release, 15th November 2007. http://www-

03.ibm.com/press/us/en/pressrelease/22613.wss

[9] R.L. Grossman, "The Case for Cloud Computing," IT
Professional, vol.11, no.2, pp.23-27, March-April 2009

[10] Amazon Elastic Compute Cloud (EC2),

http://www.amazon.com/gp/browse.html?node=201590011
[11] R. Hunter, The why of cloud,

http://www.gartner.com/DisplayDocument?doccd=226469

&ref= g noreg, 2012.
[12] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis,and A. Vakali,

Cloud computing: Distributed internetcomputing for IT and

scientific research, InternetComputing, vol.13, no.5, pp.10-13,
Sept.-Oct. 2009.

[13] P. Mell and T. Grance, The NIST definition of cloudcomputing,

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-

145.pdf, 2012.

[14] Microsoft Academic Research,

Cloudcomputing,http://libra.msra.cn/Keyword/6051/cloudcomput
ing?query=cloud%20computing, 2012.

[15] Google Trends, Cloud computing,

http://www.google.com/trends/explore#q=cloud%20computing,
2012.

[16] N. G. Shivaratri, P. Krueger, and M. Singhal, Loaddistributing

for locally distributed systems, Computer,vol. 25, no. 12, pp. 33-

44, Dec. 1992.

[17] B. Adler, Load balancing in the cloud: Tools, tips andtechniques,

http://www.rightscale.com/infocenter/whitepapers/L

oad-Balancing-in-theCloud.pdf, 2012

[18] Z. Chaczko, V. Mahadevan, S. Aslanzadeh, andC. Mcdermid,

Availability and load balancing in cloudcomputing, presented at

the 2011 International Conferenceon Computer and Software
Modeling, Singapore, 2011.

[19] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. P. Singh,N.

Nitin, and R. Rastogi, Load balancing of nodesin cloud using ant
colony optimization, in Proc. 14thInternational Conference on

Computer ModellingandSimulation (UKSim), Cambridgeshire,

United Kingdom,Mar. 2012, pp. 28-30.
[20] M. Randles, D. Lamb, and A. Taleb-Bendiab, A comparative

study intodistributed load balancingalgorithms for cloud

computing, in Proc. IEEE 24thInternational Conference on
Advanced InformationNetworking and Applications, Perth,

Australia, 2010,pp. 551-556.

[21] A. Rouse, Public cloud,
http://searchcloudcomputing.techtarget.com/definition/public-

cloud, 2012.

[22] D. MacVittie, Intro to load balancing for developers —The
algorithms,https://devcentral.f5.com/blogs/us/introto-load-

balancing for developers-ndash-the-algorithms,2012.

[23] S. Penmatsa and A.T. Chronopoulos, Game-theoreticstatic load
balancing for distributed systems, Journalof Parallel and

Distributed Computing, vol. 71, no. 4,pp. 537-555, Apr. 2011.

[24] D. Grosu, A. T. Chronopoulos, and M. Y. Leung, Loadbalancing
in distributed systems: An approach usingcooperative games, in

Proc. 16th IEEE Intl. Parallel andDistributed Processing Symp.,

Florida, USA, Apr. 2002,pp. 52-61.

 © 2014 IJAIR. ALL RIGHTS RESERVED 140

International Journal of Advanced and Innovative Research (2278-7844) / # 140 / Volume 3 Issue 5

http://www.gartner.com/
http://csrc.nist.gov/
http://www.rightscale.com/infocenter/whitepapers/Load-Balancing-in-the
http://www.rightscale.com/infocenter/whitepapers/Load-Balancing-in-the

