
Competent System-on-Chip Energy

Supervision with a Segmented Bloom Sieve
R.Deepa, M. Brundha

(PG Scholar, Department of ECE, Excel Engineering College, India)

(Assistant Professor, Department of ECE, Excel Engineering College, India)

Abstract- The cache is a crucial component for

managing the memory wall problem. In particular,

the L2 cache has become increasingly popular in

chips for high-end embedded systems such as smart

phones and tablet PCs. The cache size ranges from 256

kb to 1 MB and is expected to increase further to meet

the ever-increasing bandwidth requirements of high-

end applications, e.g., 3-D graphics-based user

interfaces. The ever-growing usage and large area of

the L2 cache result in significant power consumption.

Tag comparison in a highly associative cache

consumes a significant portion of the cache energy.

Existing methods for tag comparison reduction are

based on predicting either cache hits or cache misses.

This project introduce the new idea for both cache hit

and miss predictions. Here a partial tag- enhanced

Bloom filter to improve the accuracy of the cache miss

prediction method and hot/cold checks that control

data liveness to reduce the tag comparisons of the cache

hit prediction method.

Keywords - Cache, low power, write-through policy,

Bloom filter.

I. INTRODUCTION

Multi-Level on-chip cache systems have been

widely adopted in high-performance

microprocessors. To keep data consistence

throughout the memory hierarchy, write-through and

write-back policies are commonly employed. Under

the write-back policy, a modified cache block is

copied back to its corresponding lower level cache

only when the block is about to be replaced. While

under the write-through policy, all copies of a cache

block are updated immediately after the cache block

is modified at the current cache, even though the

block might not be evicted. As a result, the write-

through policy maintains identical data copies at all

levels of the cache hierarchy throughout most of
their life time of execution. Many high

performance microprocessors employ cache write-

through policy for performance improvement and at

the same time achieving good tolerance to soft

errors in on-chip caches. However, write-through

policy also incurs large energy overhead due to

the increased accesses to caches at the lower level

(e.g., L2 caches) during write operations. Here a

new cache architecture referred to as counting

bloom filter architecture to improve the energy

efficiency of write-through caches. By maintaining

the way tags of L2 cache in the L1 cache during

read operations, the proposed technique enables L2

cache to work in an equivalent direct-mapping

manner during write hits, which account for the

majority of L2 cache accesses. This leads to

significant energy reduction without performance

degradation. Simulation results on the SPEC

CPU2000 benchmarks demonstrate that the proposed

technique achieves 65.4% energy savings in L2

caches on average with only 0.02% area overhead

and no performance degradation. Similar results are

also obtained under different L1 and L2 cache

configurations. Furthermore, the idea of way tagging

can be applied to existing low-power cache design

techniques to further improve energy efficiency.

A. Uses Of Write Through Policy

Under the write-through policy, caches at the

lower level experience more accesses during write

operations. Obviously, the write-through policy

incurs more write accesses in the L2 cache, Power

dissipation is now considered as one of the

critical issues in cache design. Here new cache

architecture, referred to as count ing b loom

f i l te r cache sys tem, to improve the energy

efficiency of write-through cache systems with

minimal area overhead and no performance

degradation. Consider a two-level cache hierarchy,

where the L1 data cache is write-through and the L2

cache is inclusive for high performance. It is observed

that all the data residing in the L1 cache will have

copies in the L2 cache. In addition, the locations

 © 2014 IJAIR. ALL RIGHTS RESERVED 69

International Journal of Advanced and Innovative Research (2278-7844) / # 69 / Volume 3 Issue 5

of these copies in the L2 cache will not change

until they are evicted from the L2 cache. Thus, we

can attach a tag to each way in the L2 cache and send

this tag information to the L1 cache when the data is

loaded to the L1 cache. By doing so, for all the data

in the L1 cache, we will know exactly the locations

(i.e., ways) of their copies in the L2 cache. During

the subsequent accesses when there is a write hit in

the L1 cache (which also initiates a write access to

the L2 cache under the write-through policy), we

can access the L2 cache in an equivalent direct-

mapping manner because the way tag of the data copy

in the L2 cache is available. As this operation

accounts for the majority of L2 cache accesses in

most applications, the energy consumption of L2

cache can be reduced significantly.

B.Counting Bloom Filter (CBF):

An increasing number of architectural

techniques have relied on hardware counting bloom

filters (CBFs) to improve upon the energy, delay,

and complexity of various processor structures.

CBFs improve the energy and speed of membership

tests by maintaining an imprecise and compact

representation of a large set to be searched. This

paper studies the energy, delay, and area

characteristics of two implementations for CBFs

using full custom layouts in a commercial 0.13- m

fabrication technology. One implementation, S-

CBF, uses an SRAM array of counts and a shared

up/down counter. Our proposed implementation L-

CBF, utilizes an array of up/down linear feedback

shift registers and local zero detectors. Circuit

simulations show that for a 1 K-entry CBF with a

15-bit count per entry, L-CBF compared to S-CBF

is 3.7 or faster and requires 2.3 or 1.4 less energy

depending on the operation. Additionally, this

paper presents analytical energy and delay models

for L-CBF. These models can estimate energy and

delay of various CBF organizations during

architectural level explorations when a physical

level implementation is not available.

For example, CBFs have been used to

improve performance and power in snoop-coherent

multiprocessor or multi-core systems. CBFs have

been also utilized to improve the scalability of

load/store scheduling queues and to reduce

instruction replays by assisting in early miss

determination at the L1 data cache. In these

applications, CBFs help eliminate broadcasts over

the interconnection network in multi- processor

systems; CBFs also help reduce accesses to much

larger and thus much slower and power-hungry

content addressable memories, or cache tag arrays.

In all aforementioned hardware applications,

CBFs improve the energy and speed of membership

tests. Checking whether a memory block is currently

cached is an example of a member- ship test in

processors. The CBF provides a definite answer for

most, but not necessarily for all, membership tests.

As such, the CBF does not replace entirely the

underlying conventional mechanism (e.g., cache

tags), but it dynamically bypasses the conventional

mechanism, which can be slow and power hungry, as

frequently as possible. Accordingly, the benefits

obtained through the use of CBFs depend on two

factors. The first factor is how frequently a CBF

can be utilized. Architectural techniques and

application behavior determine how many member-

ship tests can be serviced by the CBF. The second

factor is the energy and delay characteristics of the

CBF. The more member- ship tests are serviced by

the CBF “alone” and the more speed and energy

efficient the CBF implementation is, the higher the

benefits.

C. Process of Read and Write in cache:

Whenever a data is updated in the L1 cache,

the L2 cache is updated with the same data as well.

This results in an increase in the write accesses

to the L2 cache and consequently more energy

consumption. The L1 cache where read

operations ac- count for a large portion of total

memory accesses, write operations are dominant in

the L2 cache for all but three benchmarks (galgel,

ammp, and art). This is because read accesses in

the L2 cache are initiated by the read misses in

the L1 cache, which typically occur much less

frequently.

 © 2014 IJAIR. ALL RIGHTS RESERVED 70

International Journal of Advanced and Innovative Research (2278-7844) / # 70 / Volume 3 Issue 5

Fig. 1. Illustration of the conventiona1 cache system

Hence it reducing the energy consumption

of L2 write accesses is an effective way for memory

power management. Note that the proposed

technique does not change the cache replacement

policy. When a cache line is evicted from the L2

cache, the status of the cache line changes to

“invalid” to avoid future fetching and thus prevent

cache coherence issues.

Since way-tag arrays will be accessed only

when a data is written into the L1 data cache

(either when CPU updates a data in the L1 data

cache or when a data is loaded from the L2

cache), they are not affected by cache misses. This

result in migration towards new cache management

architecture with the help of bloom filter.

II. BLOOM FILTER PROCESS

The binary Bloom filter is an M-bit vector,

with initially set to 0. There are two actions

available: programming and query. When

programming an element ai in set P , the k bit

positions (in the M-bit vector) indexed by the k

hash functions are set to 1. On a query on an

element aj , if all of the bits in the M-bit vector

indexed by the k hash functions have values of 1,

then the query result is positive (likely existence).

Otherwise, the result is negative (definite

nonexistence).

The Bloom filter is utilized to check the

approximate non membership of a set. When

applied to reducing tag comparisons, each cache

way is equipped with a Bloom filter. A query to

the B l o o m filter (e.g., “is address 0×100 in the
cache way?”) gives either of two results: negative

(definite nonexistence) and positive (likely

existence).

 Note that a negative result from the Bloom

filter guarantees nonexistence, i.e., a cache way

miss. Thus, before the tag structure in each cache

way is accessed, first the Bloom filter per cache way

is looked up. If the Bloom filter indicates

nonexistence, then tag comparison for the cache

way is avoided, thereby saving the energy that

would have been consumed in tag comparison.

Both: 1) the smaller energy consumed to access

the Bloom filter rather than the tag; and 2) the high

prediction accuracy for cache way misses reduce the

energy consumed in tag comparison. For instance,

in the case of a cache way miss, using the Bloom

filter produces a net energy gain as long as the

following relationship holds:

EB < p × ET

where EB and ET represent the energy consumed

while accessing the Bloom filter and the tag

structure, respectively,2 and p is the cache miss

prediction accuracy of the Bloom filter (= number

of negative results/number of total cache way

misses).

The Bloom filter is described as follows.
Assume a set P = {a1, a2, . . . , aN } of N elements

(P corresponds to a cache way and N is the
number of tags in the cache way) and k distinct hash
functions, each of which takes ai as the input and

outputs an index of log2 M bits as the result.

The programming of a binary Bloom filter

corresponds to the cache line-fill. When a new

cache line starts to reside in a cache way, the

Bloom filter associated with the cache way is

programmed with the tag of the new cache line.

The query corresponds to a cache access for reading

or writing. The Bloom filter can give a positive

result, i.e., likely existence, even in the case of a

cache miss, which is called a false positive.

A. S-CBF:SRAM-Based CBF Implementation

 CBF implementation consisting of an SRAM

array of counts, a shared up/down counter, a zero-

comparator, and a small controller. We will refer to

this implementation as S-CBF. The architecture of S-

CBF is depicted in Fig. 2. Updates are implemented

as read-modify-write sequences as follows: 1) the

 © 2014 IJAIR. ALL RIGHTS RESERVED 71

International Journal of Advanced and Innovative Research (2278-7844) / # 71 / Volume 3 Issue 5

count is read from the SRAM; 2) it is adjusted
using the counter; and 3) it is written back to the

SRAM. The probe operation is implemented as a read

from the SRAM, and a compare with zero using the

zero-comparator. A small controller coordinates this

sequence of actions.

In this optimization was proposed to speedup

probe operations and to reduce their power.

Specifically, an extra bit Z is added to each count.

When the count is nonzero the Z is set to false and

when the count is zero, the Z is set to true. Probes

can now simply inspect Z. The Z bits can be

implemented as a separate SRAM structure which is

faster and requires much less power. This type of

optimization is compatible with both S-CBF and L-

CBF architectures.

Fig. 2. S-CBF architecture: an SRAM hold

B. LFSRs

 A maximum-length-bit LFSR sequences

through states. It goes through all possible code

permutations except one. The LFSR consists of a

shift register and a few embedded XNOR gates fed

by a feedback loop. Each LFSR has the following

defining parameters:

1) width, or size, of the LFSR (it is equal to the

number of bits in the shift register);

2) number and positions of taps (taps are special

locations in the LFSR that have a connection with

the feedback loop);

3) Initial state of the LFSR which can be any value

except one (all ones for XNOR feedback).

Without the loss of generality, we restrict our

attention to the Galois implementation of LFSRs.

State transitions proceed as follows. The non-

tapped bits are shifted from the previous position.

The tapped bits are XNOR with the feedback loop

before being shifted to the next position. The

combination of the taps and their locations can be

represented by a polynomial. Fig. 3 shows an 8-bit

maximum-length Galois LFSR, its taps, and

polynomial.

Fig. 3. Eight-bit maximum-length LFSR.

Fig. 4. Three-bit maximum-length up/down LFSR.

The superposition of the two LFSRs (the

original and its re- verse) forms a reversible

“up/down” LFSR. The up/down LFSR consists of a

shift register similar to the one used for the unidi-

rectional LFSR; a 2-to-1 multiplexer per bit to

control the shift direction; and twice as many

XNOR gates as the unidirectional LFSR. Fig. 4

shows the construction of a 3-bit maximum-length

up/down LFSR. It also depicts the polynomials

and count se- quence of both up and down

directions. In general, it is possible to construct a

maximum-length up/down LFSR of any width

with two or six XNOR gates (i.e., four or eight

taps) counters, has a delay of . Counters with

a Manchester carry-chain, carry lookahead and

binary tree carry propagation have delay of

 though at the cost of more energy and

area. In applications where the count sequence is

 © 2014 IJAIR. ALL RIGHTS RESERVED 72

International Journal of Advanced and Innovative Research (2278-7844) / # 72 / Volume 3 Issue 5

unimportant [e.g., pointers of circular first-inputs–

first-outputs (FIFOs) and frequency dividers], an

LFSR counter offers a speed-power-area efficient

solution. The delay of an LFSR is nearly

independent of its size. Specifically, the LFSR

delay consists of a flip-flop delay, an XNOR gate

delay, and a feedback loop delay. The feedback

loop delay is the propagation delay of the last

flip-flop output to the input of the furthest

XNOR gate from the last flip-flop. Ignoring

secondary effects on the feedback path, the delay

of an n-bit maximum length LFSR is O and

independent of the counter size. These

characteristics make LFSRs a suitable counter

choice for CBFs.

C. L-CBF Implementation

 L-CBF includes a hierarchical decoder and

a hierarchical output multiplexer. The core of the

design is an array of up/down LFSRs and zero

detectors. The L-CBF design is divided into several

partitions where each row of a partition consists of

an up/down LFSR and a zero detector.

L-CBF accepts three inputs and produces a

single-bit output is-zero. The input operation select

specifies the type of operation: INC, DEC, PROBE,

and IDLE. The input address specifies the address in

question and the input reset is used to initialize all

LFSRs to the zero state. The LFSRs utilize two non-

overlapping phase clocks generated internally from

an external clock.

 We use a hierarchical decoder for decoding

the address to minimize the energy-delay product.

The decoder consists of a pre-decoding stage, a

global decoder to select the appropriate partition,

and a set of local decoders, one per partition. Each

partition has a shared local is-zero output. A

hierarchical multiplexer collects the local is-zero

signals and provides the single-bit is-zero output.

III. IMPLEMENTATION:

A. Partial Tag-Enhanced Bloom Filter

In case of a singleton entry, the original BF

does not specify whether the incoming address is

present in the cache way. To be able to check the

presence of the incoming address in the case of a

singleton, we propose the use of a partial tag for

each BF entry. Fig. 5 shows a partial tag-

enhanced counting Bloom filter.

Fig. 5. Bloom filter with a partial tag.

A BF entry has the tuple <C, Z, S, P>,

where C is the counter, Z is the zero flag, S is

the singleton flag, and P is the partial tag. In

our experiments, the size of the partial tag is

small, 3 bits. Thus, compared to the original

Bloom filter, the partial tag-enhanced Bloom filter

has an overhead of 4 bits (including the S flag)

per entry.

On each entry/exit (program/de-program) of

address to/from the Bloom filter, the

corresponding partial tag is calculated in bitwise

XOR operations as follows:

PTagnew = PTagold XOR PTagin //BF entry

(program)

PTagnew = PTagold XOR PTagout //BF exit

(de-program)

where PTagold and PTagnew represent the old

and newly calcu- lated partial tags, respectively.

PTagin and PTagout represent the partial

tags of the incoming (i.e., newly fetched) and

outgoing (i.e., evicted) cache lines, respectively.

Such a partial tag manipulation gives the partial

tag of the currently existing address in the case

of a singleton entry.

For instance, assume that a BF entry has

the following sequence of entries and exits: A1−

in, A3−in, A5−in, A3−out, A2−in, A1−out, and

A5 out. After the exit of the last address A5,

the corresponding BF entry becomes a singleton

entry because it contains only one address, i.e.,

A2, and its partial tag contains that of A2, which

is the only existing address are “1”.

 © 2014 IJAIR. ALL RIGHTS RESERVED 73

International Journal of Advanced and Innovative Research (2278-7844) / # 73 / Volume 3 Issue 5

Fig. 6. Partial tag-enhanced Bloom filter operation.

Fig. 6 shows a pseudo code of the

partial tag-enhanced Bloom filter operation when

k = 1 Compared to the original functionality of the

Bloom filter for cache miss predictions, the new

functionality is shown in bold (lines 3–5 and

10– 11). If the counter of the corresponding BF

entry is not zero, then the singleton check and

partial tag match are performed. If there is a

mismatch between the partial tags of singleton

entry and the incoming address, the access is a

miss for the corresponding way.

 In the singleton cases where the partial tag

comparison gives a match and in non singleton

cases, subsequent tag comparison needs to be

performed (“likely hit” case in line 5). Note that

when multiple (k > 1) hash functions

 are used, if all the Bloom filter entries hashed by

the k hash functions are singletons, all the singleton

entries give the same partial tag. Thus, in the case

of multiple hash functions, the singleton test in

line 4 checks to see if all the k S flags.

IV. CONCLUSION

In this project a multistep tag comparison

method to reduce the energy consumed in tag

comparison within highly associative L2 caches.

We presented a partial tag-enhanced Bloom filter

to improve the accuracy of cache miss prediction.

We also explained hot/cold checks (with dynamic

timeout tracking) as a cache hit prediction method.

To further reduce tag comparisons, a partial tag

comparison that takes place during cold checks.

Finally, a method to determine the tradeoff between

energy consumption and performance, which will be

particularly useful for latency- critical programs.

The proposed method reduces the total cache

energy consumption by 8.86% as compared to

existing methods and by 10.07% when zero

awareness is applied. In future, we will investigate

the effectiveness of the proposed method in

multicore environments.

V. REFERENCES

[1] A. Malik, B. Moyer, and D. Cermak, “A low

power unified cache architecture providing power

and performance flexibility,” in Proc. Int. Symp.

Low Power Electron. Design, IEEE January 2011..

[2] K. Osada, K. Yamaguchi, and Y. Saitoh,

“SRAM immunity to cosmic-ray-induced

multierrors based on analysis of an induced

parasitic bipolar effect,” IEEE J. Solid-State

Circuits, May 2009

[3] J. Dai and L. Wang, “Way-tagged cache: An

energy efficient L2 cache architecture under write

through policy,” in Proc. Int. Symp. Low Power

Electron. Design, IEEE, March 2010.

[4] R. Min, W. Jone, and Y. Hu, “Phased tag cache:

An efficient low power cache system,” in Proc. Int.

Symp. Circuits System, IEEE, June 2009.

[5] A. Moshovos, G. Memik, B. Falsafi, and A.

Choudhary, “Jetty: Filtering snoops for reduced

energy consumption in smp servers,” in Proc. Ann.

Int. Conf. High-Performance Comput. Arch.,

[6] P. Alfke, “Efficient shift registers, LFSR

counters, and long pseudo- random sequence

generators,” Xilinx, San Jose, CA

[7] B. S. Amrutur, “Design and analysis of fast low

power SRAMs,” Ph.D. dissertation, Elect. Eng.

Dept., Stanford Univ., Stanford, CA.

[8] M. Mamidipaka, K. Khouri, N. Dutt, and M.

Abadir, “Analytical models for leakage power

estimation of memory array structures,” in Proc.

Int. Conf. Hardw./Softw. Co-Design Syst. Synth.

 [9] X. N. Chen and L. S. Peh, “Leakage power

modeling and optimization of interconnection

network,” in Proc. Int. Symp. Low Power Electron.

Des.

[10]T. Ishihara and F. Fallah, “A way memoization

technique for reducing power consumption of

caches in application specific integrated proces-

sors,” in Proc. Design Autom. Test Euro. Conf.,

2005, pp. 358–363.

 © 2014 IJAIR. ALL RIGHTS RESERVED 74

International Journal of Advanced and Innovative Research (2278-7844) / # 74 / Volume 3 Issue 5

