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Abstract- The cache is a crucial component for 

managing the memory wall problem. In particular, 

the L2 cache has become increasingly popular in 

chips for high-end embedded systems such as smart 

phones and tablet PCs. The cache size ranges from 256 

kb to 1 MB and is expected to increase further to meet 

the ever-increasing bandwidth requirements of high-

end applications, e.g., 3-D graphics-based user 

interfaces. The ever-growing usage and large area of 

the L2 cache result in significant power consumption. 

Tag comparison in a highly associative cache 

consumes a significant portion of the cache energy. 

Existing methods for tag comparison reduction are 

based on predicting either cache hits or cache misses. 

This project introduce the new idea for both cache hit 

and miss predictions. Here a partial tag- enhanced 

Bloom filter to improve the accuracy of the cache miss 

prediction method and hot/cold checks that control 

data liveness to reduce the tag comparisons of the cache 

hit prediction method. 

Keywords - Cache, low power, write-through policy, 

Bloom filter. 

I. INTRODUCTION 

 

Multi-Level on-chip cache systems have been 

widely adopted in high-performance 

microprocessors. To keep data consistence 

throughout the memory hierarchy, write-through and 

write-back policies are commonly employed. Under 

the write-back policy, a modified cache block is 

copied back to its corresponding lower level cache 

only when the block is about to be replaced. While 

under the write-through policy, all copies of a cache 

block are updated immediately after the cache block 

is modified at the current cache, even though the 

block might not be evicted. As a result, the write-

through policy maintains identical data copies at all 

levels of the cache hierarchy throughout most of 
their life time of execution. Many high 

performance microprocessors employ cache write-

through policy for performance improvement and at 

the same time achieving good tolerance to soft 

errors in on-chip caches. However, write-through 

policy also incurs large energy overhead due to 

the increased accesses to caches at the lower level 

(e.g., L2 caches) during write operations.  Here  a 

new cache architecture referred to as counting 

bloom filter architecture to improve the energy 

efficiency of write-through caches. By maintaining 

the way tags of L2 cache in the L1 cache during 

read operations, the proposed technique enables L2 

cache to work in an equivalent direct-mapping 

manner during write hits, which account for the 

majority of L2 cache accesses. This leads to 

significant energy reduction without performance 

degradation. Simulation results on the SPEC 

CPU2000 benchmarks demonstrate that the proposed 

technique achieves 65.4% energy savings in L2 

caches on average with only 0.02% area overhead 

and no performance degradation. Similar results are 

also obtained under different L1 and L2 cache 

configurations. Furthermore, the idea of way tagging 

can be applied to existing low-power cache design 

techniques to further improve energy efficiency. 

A. Uses Of Write Through Policy 

 

Under the write-through policy, caches at the 

lower level experience more accesses during write 

operations. Obviously, the write-through policy 

incurs more write accesses in the L2 cache, Power 

dissipation is now considered as one of the 

critical issues in cache design. Here new cache 

architecture, referred to as count ing  b loom 

f i l te r  cache  sys tem, to improve the energy 

efficiency of write-through cache systems with 

minimal area overhead and no performance 

degradation. Consider a two-level cache hierarchy, 

where the L1 data cache is write-through and the L2 

cache is inclusive for high performance. It is observed 

that all the data residing in the L1 cache will have 

copies in the L2 cache. In addition, the locations 
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of these copies in the L2 cache will not change 

until they are evicted from the L2 cache. Thus, we 

can attach a tag to each way in the L2 cache and send 

this tag information to the L1 cache when the data is 

loaded to the L1 cache. By doing so, for all the data 

in the L1 cache, we will know exactly the locations 

(i.e., ways) of their copies in the L2 cache. During 

the subsequent accesses when there is a write hit in 

the L1 cache (which also initiates a write access to 

the L2 cache under the write-through policy), we 

can access the L2 cache in an equivalent direct-

mapping manner because the way tag of the data copy 

in the L2 cache is available. As this operation 

accounts for the majority of L2 cache accesses in 

most applications, the energy consumption of L2 

cache can be reduced significantly. 

B.Counting Bloom Filter (CBF): 

An increasing number of architectural 

techniques have relied on hardware counting bloom 

filters (CBFs) to improve upon the energy, delay, 

and complexity of various processor structures. 

CBFs improve the energy and speed of membership 

tests by maintaining an imprecise and compact 

representation of a large set to be searched. This 

paper studies the energy, delay, and area 

characteristics of two implementations for CBFs 

using full custom layouts in a commercial 0.13- m 

fabrication technology. One implementation, S-

CBF, uses an SRAM array of counts and a shared 

up/down counter. Our proposed implementation L-

CBF, utilizes an array of up/down linear feedback 

shift registers and local zero detectors. Circuit 

simulations show that for a 1 K-entry CBF with a 

15-bit count per entry, L-CBF compared to S-CBF 

is 3.7  or faster and requires 2.3  or 1.4  less energy 

depending on the operation. Additionally, this 

paper presents analytical energy and delay models 

for L-CBF. These models can estimate energy and 

delay of various CBF organizations during 

architectural level explorations when a physical 

level implementation is not available. 

For example, CBFs have been used to 

improve performance and power in snoop-coherent 

multiprocessor or multi-core systems. CBFs have 

been also utilized to improve the scalability of 

load/store scheduling queues and to reduce 

instruction replays by assisting in early miss 

determination at the L1 data cache. In these 

applications, CBFs help eliminate broadcasts over 

the interconnection network in multi- processor 

systems; CBFs also help reduce accesses to much 

larger and thus much slower and power-hungry 

content addressable memories, or cache tag arrays. 

In all aforementioned hardware applications, 

CBFs improve the energy and speed of membership 

tests. Checking whether a memory block is currently 

cached is an example of a member- ship test in 

processors. The CBF provides a definite answer for 

most, but not necessarily for all, membership tests. 

As such, the CBF does not replace entirely the 

underlying conventional mechanism (e.g., cache 

tags), but it dynamically bypasses the conventional 

mechanism, which can be slow and power hungry, as 

frequently as possible. Accordingly, the benefits 

obtained through the use of CBFs depend on two 

factors. The first factor is how frequently a CBF 

can be utilized. Architectural techniques and 

application behavior determine how many member- 

ship tests can be serviced by the CBF. The second 

factor is the energy and delay characteristics of the 

CBF. The more member- ship tests are serviced by 

the CBF “alone” and the more speed and energy 

efficient the CBF implementation is, the higher the 

benefits. 

 

C. Process of Read and Write in cache: 

 

Whenever a data is updated in the L1 cache, 

the L2 cache is updated with the same data as well. 

This results in an increase in the write accesses 

to the L2 cache and consequently more energy 

consumption. The L1 cache where read 

operations ac- count for a large portion of total 

memory accesses, write operations are dominant in 

the L2 cache for all but three benchmarks (galgel, 

ammp, and art). This is because read accesses in 

the L2 cache are initiated by the read misses in 

the L1 cache, which  typically occur much less 

frequently. 
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Fig. 1.  Illustration of the conventiona1 cache system 

Hence it reducing the energy consumption 

of L2 write accesses is an effective way for memory  

power  management. Note that the proposed 

technique does not change the cache replacement 

policy. When a cache line is evicted from the L2  

cache, the status of the cache line changes to 

“invalid” to avoid future fetching and thus prevent 

cache coherence issues. 

Since way-tag arrays will be accessed only 

when a data is written into the L1 data cache 

(either when CPU updates a data in the L1 data 

cache or when a data is loaded from the L2 

cache), they are not affected by cache misses. This 

result in migration towards new cache management 

architecture with the help of bloom filter. 

II. BLOOM FILTER PROCESS 

 

The binary Bloom filter is an M-bit vector, 

with initially set to 0. There are two actions 

available: programming and query. When 

programming an element ai in set P , the k bit 

positions (in the M-bit vector) indexed by the k 

hash functions are set to 1. On a query on an 

element aj , if all of the bits in the M-bit vector 

indexed by the k hash functions have values of 1, 

then the query result is positive (likely existence). 

Otherwise, the result is negative (definite 

nonexistence). 

 

The Bloom filter is utilized to check the 

approximate non membership of a set. When 

applied to reducing tag comparisons, each cache 

way is equipped with a Bloom filter. A query to 

the B l o o m  filter (e.g., “is address 0×100 in the 
cache way?”) gives either of two results: negative 

(definite nonexistence) and  positive  (likely  

existence).  

 Note  that  a negative result from the Bloom 

filter guarantees nonexistence, i.e., a cache way 

miss. Thus, before the tag structure in each cache 

way is accessed, first the Bloom filter per cache way 

is looked up. If the Bloom filter indicates 

nonexistence, then tag comparison for the cache 

way is avoided, thereby saving the energy that 

would have been consumed in tag comparison. 

Both: 1) the smaller energy consumed to access 

the Bloom filter rather than the tag; and 2) the high 

prediction accuracy for cache way misses reduce the 

energy consumed in tag comparison. For instance, 

in the case of a cache way miss, using the Bloom 

filter produces a net energy gain as long as the 

following relationship holds: 

EB < p × ET 

where EB and ET represent the energy consumed 

while accessing the Bloom filter and the tag 

structure, respectively,2 and p is the cache miss 

prediction accuracy of the Bloom filter (= number 

of negative results/number of total cache way 

misses). 

The Bloom filter is described as follows.  
Assume a set P = {a1, a2, . . . , aN } of N elements 

(P corresponds to a cache way and N is the 
number of tags in the cache way) and k distinct hash 
functions, each of which takes ai as the input and 

outputs an index of log2 M bits as the result. 

The programming of a binary Bloom filter 

corresponds to the cache line-fill. When a new 

cache line starts to reside in a cache way, the 

Bloom filter associated with the cache way is 

programmed with the tag of the new cache line. 

The query corresponds to a cache access for reading 

or writing. The Bloom filter can give a positive 

result, i.e., likely existence, even in the case of a 

cache miss, which is called a false positive. 

A. S-CBF:SRAM-Based CBF Implementation 

 CBF implementation consisting of an SRAM 

array of counts, a shared up/down counter, a zero- 

comparator, and a small controller. We will refer to 

this implementation as S-CBF. The architecture of S-

CBF is depicted in Fig. 2. Updates are implemented 

as read-modify-write sequences as follows: 1) the 

    © 2014 IJAIR. ALL RIGHTS RESERVED                                                                                     71

International Journal of Advanced and Innovative Research (2278-7844) / # 71 / Volume 3 Issue 5



 

 
 

  

 

 

 

 

 

 

 

 

 

count is read from the SRAM; 2) it is adjusted 
using the counter; and 3) it is written back to the 

SRAM. The probe operation is implemented as a read 

from the SRAM, and a compare with zero using the 

zero-comparator. A small controller coordinates this 

sequence of actions. 

In this optimization was proposed to speedup 

probe operations and to reduce their power. 

Specifically, an extra bit Z is added to each count. 

When the count is nonzero the Z is set to false and 

when the count is zero, the Z is set to true. Probes 

can now simply inspect Z. The Z bits can be 

implemented as a separate SRAM structure which is 

faster and requires much less power. This type of 

optimization is compatible with both S-CBF and L-

CBF architectures. 

 

 

 
Fig. 2.  S-CBF architecture: an SRAM hold 

 

B. LFSRs 

 A maximum-length-bit LFSR sequences 

through states. It goes through all possible code 

permutations except one. The LFSR consists of a 

shift register and a few embedded XNOR gates fed 

by a feedback loop. Each LFSR has the following 

defining parameters: 

1) width, or size, of the LFSR (it is equal to the 

number of bits in the shift register); 

2) number and positions of taps (taps are special 

locations in the LFSR that have a connection with 

the feedback loop); 

3) Initial state of the LFSR which can be any value 

except one (all ones for XNOR feedback). 

Without the loss of generality, we restrict our 

attention to the Galois implementation of LFSRs. 

State transitions  proceed as follows. The non-

tapped bits are shifted from the previous position. 

The tapped bits are XNOR with the feedback loop 

before being shifted to the next position. The 

combination of the taps and their locations can be 

represented by a polynomial. Fig. 3 shows an 8-bit 

maximum-length Galois LFSR, its taps, and 

polynomial. 

 

 

 

Fig. 3.  Eight-bit maximum-length LFSR. 

 

 

 

Fig. 4.  Three-bit maximum-length up/down LFSR. 

The superposition of the two LFSRs (the 

original and its re- verse) forms a reversible 

“up/down” LFSR. The up/down LFSR consists of a 

shift register similar to the one used for the unidi- 

rectional LFSR; a 2-to-1 multiplexer per bit to 

control the shift direction; and twice as many 

XNOR gates as the unidirectional LFSR. Fig. 4 

shows the construction of a 3-bit maximum-length 

up/down LFSR. It also depicts the polynomials 

and count se- quence of both up and down 

directions. In general, it is possible to construct a 

maximum-length up/down LFSR of any width 

with two or six XNOR gates (i.e., four or eight 

taps) counters, has a delay of . Counters with 

a Manchester carry-chain, carry lookahead and 

binary tree carry propagation have delay of 

  though  at  the cost of more energy and 

area. In applications where the count sequence is 
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unimportant [e.g., pointers of circular first-inputs–

first-outputs (FIFOs) and frequency dividers], an  

LFSR counter offers a speed-power-area efficient 

solution. The delay of an LFSR is nearly 

independent of its size.  Specifically, the LFSR 

delay consists of a flip-flop delay, an XNOR gate 

delay, and a feedback loop delay. The feedback 

loop delay is the propagation delay of the last 

flip-flop output to the input of the furthest 

XNOR gate from the last flip-flop. Ignoring 

secondary effects on the feedback path, the delay 

of an n-bit maximum length LFSR is O and  

independent of the counter size. These 

characteristics make LFSRs a suitable counter 

choice for CBFs. 

 

C. L-CBF Implementation 

 

       L-CBF includes a hierarchical decoder and 

a hierarchical output multiplexer. The core of the 

design is an array of up/down LFSRs and zero 

detectors. The L-CBF design is divided into several 

partitions where each row of a partition consists of 

an up/down LFSR and a zero detector. 

L-CBF accepts three inputs and produces a 

single-bit output is-zero. The input operation select 

specifies the type of operation: INC, DEC, PROBE, 

and IDLE. The input address specifies the address in 

question and the input reset is used to initialize all 

LFSRs to the zero state. The LFSRs utilize two non-

overlapping phase clocks generated internally from 

an external clock. 

     We use a hierarchical decoder for decoding 

the address to minimize the energy-delay product. 

The decoder consists of a pre-decoding stage, a 

global decoder to select the appropriate partition, 

and a set of local decoders, one per partition. Each 

partition has a shared local is-zero output. A 

hierarchical multiplexer collects the local is-zero 

signals and provides the single-bit is-zero output. 

 

III. IMPLEMENTATION: 

 

A. Partial Tag-Enhanced Bloom Filter 

In case of a singleton entry, the original BF 

does not specify whether the incoming address is 

present in the cache way. To be able to check the 

presence of the incoming address in the case of a 

singleton, we propose the use of a partial tag for 

each BF entry. Fig. 5 shows a partial tag-

enhanced counting Bloom filter. 

 
 

Fig. 5.   Bloom filter with a partial tag. 

A BF entry has the tuple <C, Z, S, P>, 

where C is the counter, Z is the zero flag, S is 

the singleton flag, and P is the partial tag. In 

our experiments, the size of the partial tag is 

small, 3 bits. Thus, compared to the original 

Bloom filter, the partial tag-enhanced Bloom filter 

has an overhead of 4 bits (including the S flag) 

per entry.  

On each entry/exit (program/de-program) of 

address to/from the Bloom filter, the 

corresponding partial tag is calculated in bitwise 

XOR operations as follows: 

PTagnew = PTagold XOR PTagin //BF entry 

(program) 

PTagnew = PTagold XOR PTagout          //BF exit                         

(de-program) 

where PTagold and PTagnew represent the old 

and newly calcu- lated partial tags, respectively.  

 

PTagin and PTagout represent the partial 

tags of the incoming (i.e., newly fetched) and 

outgoing (i.e., evicted) cache lines, respectively. 

Such a partial tag manipulation gives the partial 

tag of the currently existing address in the case 

of a singleton entry.  

For instance, assume that a BF entry has 

the following sequence of entries and exits: A1− 

in, A3−in, A5−in, A3−out, A2−in, A1−out, and 

A5 out. After the exit of the last address A5, 

the corresponding BF entry becomes a singleton 

entry because it contains only one address, i.e., 

A2, and its partial tag contains that of A2, which 

is the only existing address are “1”. 
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Fig. 6.  Partial tag-enhanced Bloom filter operation. 

Fig. 6 shows a pseudo code of the 

partial tag-enhanced Bloom filter operation when 

k = 1 Compared to the original functionality of the 

Bloom filter for cache miss predictions, the new 

functionality is shown in bold (lines 3–5 and 

10– 11). If the counter of the corresponding BF  

entry  is  not zero, then the singleton check and 

partial tag match are performed. If there is a 

mismatch between the partial tags of singleton 

entry and the incoming address, the access is a 

miss for the corresponding way.  

     In the singleton cases where the partial tag 

comparison gives a match and in non singleton 

cases, subsequent tag comparison needs to be 

performed (“likely hit” case in line 5). Note that 

when multiple (k > 1) hash functions  

   are used, if all the Bloom filter entries hashed by 

the k hash functions are singletons, all the singleton 

entries give the same partial tag. Thus, in the case 

of multiple hash functions, the singleton test in 

line 4 checks to see if all the k S flags. 

 

IV. CONCLUSION 

In this project a multistep tag comparison 

method to reduce the energy consumed in tag 

comparison within highly associative L2 caches. 

We presented a partial tag-enhanced Bloom filter 

to improve the accuracy of cache miss prediction. 

We also explained hot/cold checks (with dynamic 

timeout tracking) as a cache hit prediction method. 

To further reduce tag comparisons, a partial tag 

comparison that takes place during cold checks. 

Finally, a method to determine the tradeoff between 

energy consumption and performance, which will be 

particularly useful for latency- critical programs. 

The proposed method reduces the total cache 

energy consumption by 8.86% as compared to 

existing methods and by 10.07% when zero 

awareness is applied. In future, we will investigate 

the effectiveness of the proposed method in 

multicore environments. 
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