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Abstract - Laminated composites have found extensive use as 

aircraft structural materials due to their high strength to weight and 

stiffness to weight ratios. In addition to aircraft structures, they have 

found their way into many automobile and building structures. Apart 

from having better strength, stiffness and lower weight properties, 

they have better corrosion resistance, thermal and acoustic insulation 

properties than metallic structures. In the present investigation, the 

free vibration analysis of 3-ply symmetric cross-ply laminated square 

plate subjected to different sets of boundary condition is carried out 

using Finite Element Method. The fundamental natural frequencies 

of free vibration are obtained for various side to thickness ratio of the 

laminated composite plate. A computer program in MATLAB has 

been developed for the vibration analysis on the basis of finite 

element formulation. Also, a commercially available finite-element 

package ANSYS is used for the numerical analysis.  

 
Keywords— Laminated composites plates, free vibration, cross-                 

 

                     ply, FEM, ANSYS, CPT, FSDT 

I. INTRODUCTION.   

 

Composite materials can be classified into two groups such as 

filled materials and reinforced materials. The main feature of 

filled materials is the existence of some basic or matrix 

material whose properties are improved by filling it with some 

particles. Usually the matrix volume fraction is more than 

50% in such materials. The basic components of reinforced 

materials (sometimes referred to as advanced composites) are 

long and thin fibers possessing high strength and stiffness. The 

fibers are bound with a matrix material whose volume fraction 

is less than 50%.    

Fibers used in advanced composites are of two types:  (i) 

carbon fibers (e.g. carbon,  boron,  steel, glass, aramid, 

polyethylene fibers etc.) and (ii) natural fibers (e.g. wood, coir, 

bamboo, wool, cotton, rice, natural silk, asbestos etc.). Fig.1.1 

shows different types of fabrications in composites. 

 

Fig. 1.1 : Different types of fabrications in composites 

(a) Plain , (b)twill,  (c) biaxial woven, and (d) triaxial 

woven fabrics 

 

The increasing demand for light weight yet strong and stiff 

structures has led to the development of advanced fiber-

reinforced composites. These materials are used not only in 

the aerospace industry but also in a variety of commercial 

applications in the automobile, marine and biomedical areas. 

Traditionally, fibrous composites are manufactured by 

laminating several layers of unidirectional fiber tapes pre-

impregnated with matrix material. The effective properties of 
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the composite can be controlled by changing several 

parameters like the fiber orientation in a layer, stacking 

sequence, fiber and matrix material properties and fiber 

volume fraction. However, the manufacture of fibrous 

laminated composites from prepregs is labor intensive. 

Laminated composites also lack through-thickness 

reinforcement, and hence have poor inter laminar strength and 

fracture toughness. 

2. THEORY OF COMPOSITES. 

The analysis of plate and shell structures are mainly based on 

the following theories:                 

1.  The classical plate theory (CPT)   

2.  The first-order shear deformation theory (FSDT)  

3.  The higher-order shear deformation theory (HSDT)  

 

2.1 Elastic constitutive equations for different materials 

Composites are a subclass of anisotropic materials that are 

classified as orthotropic. Orthotropic materials have properties 

that are different in three mutually perpendicular directions. 

They have three mutually perpendicular axes of symmetry, 

and a load applied parallel to these axes produces only normal 

strains. However, loads that are not applied parallel to these 

axes produce both normal and shear strains. Therefore, 

orthotropic mechanical properties are a function of orientation. 

Fig. 2.1 demonstrates the directions of stress and strain 

components in three mutually perpendicular directions. 

 

 

Fig. 2.1: stress and strain components in 3-Dimensions 

2.1.1 Stress-strain relations (3-Dimensional) 

 

The 3-Dimensional stress-strain relations for different 

materials are given by Generalized Hooke’s law. In matrix 

form, 

 {σ}=[C]{ε}                                              ………(2.1.1) 

where [C] is called stiffness matrix. 

 general anisotropic material (no plane of material symmetry) 

 

=   .... (2.1.2) 

                                                                                                              

In general, there are (6x6=36) number of unknowns in the  

above equation. But due to symmetry, the numbers of 

unknowns reduce to 21. 

For specially orthotropic materials (3-mutually perpendicular 

planes of material symmetry), the number of unknowns in the 

constitutive equation reduces to 9. Hence, the stress-strain 

relationship takes the form 

 

   …….. (2.1.3) 

 

For transversely isotropic material (an orthotropic material is 

called transversely isotropic when one of its principal plane is 

a plane of isotropy. At every point on this plane, the 

mechanical properties are the same in all directions), there are 

5 unknown coefficients in the equation. The stress-strain 

relationship for such materials reduces to 

            …….. (2.1.4) 

 

For isotropic material (a material having infinite number of 

planes of material symmetry through a point), there are 2 

unknown coefficients in the equation and hence, the stress and 

strain components are related as 
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                     …….. (2.1.5)                                                                                           

  

 where   C44 =  

 

2.1.2 Strain-stress relations (3-Dimensional) 

 

The 3-Dimensional strain-stress relations for different 

materials is written in matrix form as 

{ε}=[S]{σ}                           …….. (2.1.6) 

where [S] is called compliance matrix. 

The stiffness matrix [C] and compliance matrix [S] are related 

as 

[C] = [S]
- 1

               …….. (2.1.7) 

For isotropic materials, the strain-stress constitutive equation 

is given as 

                 

  ……… (2.1.8)             

 

where the elastic modulus (E), shear modulus (G) and 

Poisson’s ratio (ν) are related as  

              G = E/2(1+ )             …….. (2.1.9) 

For orthotropic materials, the strain-stress relation becomes 

      ….. (2.1.10)      

 

where elastic modulus  E1 =  σx / εx and so on and Poisson’s 

ratio   12 = - εy / εx and so on.  Also 

 = ,   =  and   =  

For transversely isotropic material (in plane yz) 

   E2 = E3                ,             G12 = G13 

 12 =  13    ,             =  

2.1.3 Stress-strain relations for arbitrary orientation of a 

lamina 

A lamina inclined to the reference axes is shown in fig. 2.2. 

 
Fig. 2.2: Arbitrary orientation of a lamina 

 

The stress-strain relation for a lamina inclined at an angle θ to 

the reference axes is written as 

{σ}xy =  [Q]xy{ε}xy                                                        …….. (2.1.17) 

 

where [Q]xy = [Tσ][Q]1-2[Tσ]
T
   is the transformed stiffness 

matrix. 

[Tσ]=              …….. (2.1.18) 

 

is called stress transformation matrix. 

 

writing the elements of stiffness matrices [Q]xy and [Q]1-2 , 

 

 = 

                  ….. (2.1.19)   

2.1.4   Strain-stress relations for arbitrary orientation of a 

lamina 

The strain-stress relation for a lamina inclined at an angle θ to 

the reference axes is written as 

{ε}xy = [S]xy {σ}xy                                                              …….. (3.2.20)                                                                                                                    

     =           …….. (3.2.21) 

3.1 Stress-strain relationship in laminates 
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A small element of laminate surrounding a point (x, y) on the 

geometric mid-plane at a distance z from middle surface and 

subjected to plane-stress conditions. The directions of stresses 

are also indicated. 

 

Fig 3.1: Lamina in Plane Stress (σx, σy, τxy) 

 

The strain-displacement equations for transverse shear strains 

and the in-plane strains at any point in the lamina in terms of 

strains and curvature at middle surface are given by 

 

 =  =  + z  

 =  = +z                                           ….. (3.1.1) 

                                  

=  +  = + z  

 

A general laminate consists of an arbitrary number of layers 

(N). The Cartesian stress components within any one of these 

layers, say the k
th

 layer, are defined by equation  

   =  

               

               =    ….. (3.1.2) 

 

Figure 3.2. The location of each layer is important in defining 

the governing relations for laminate response.  

 

Fig. 3.2: Laminate stacking sequence nomenclatures 

The stress resultants are given by 

Nx = dz 

Ny = dz                                             …….. (3.1.3) 

 Nxy =  d  

 

Putting equation (3.1.3) in matrix form: 

 

 =                                …….. (3.1.4) 

 

The units of the moment resultants are moment per unit length. 

The moment resultants are given by 

Mx = dz 

My = dz                                           …….. (3.1.5) 

 Mxy = dz 

 

Putting equation (3.1.5) in matrix from: 

 

 =                            …….. (3.3.6) 

 

The integrals in equations (3.1.4) and (3.1.6) must be 

performed over each ply and then summed. Using the 

schematics of laminate in fig.3.4, equations (3.1.4) and (3.1.6) 

may be written as: 
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 =                    …….. (3.1.7) 

 

and 

 

 =                  …….. (3.1.8) 

 

 

The directions for all the stress and moment resultants are 

shown in the fig.3.3. The doubled- headed arrow indicates 

torque in a direction determined by the right-hand-rule. 

 

 
 

Fig. 3.3:  Directions of stress and moment resultants 

 

Substitution of equation (3.1.2) into equations (3.1.7) and 

(3.1.8) gives 

 

=

…….. (3.1.9) 

                          

=

                 …….. (3.1.10) 

 

 Since the middle surface strains and curvatures (the ε
0
’s and 

κ’s) are not a function of z (because these values are always at 

the middle surface z = 0), they need not to included in the 

integration. Also, the laminate stiffness matrix is constant for 

a given ply, so it too will be a constant over the integration of 

lamina thickness. Then the equations (3.1.9) and (3.1.10) 

become 

=

                                                                             …….. (3.1.11) 

 

=

                                                                              ..….. (3.1.12) 

 
Since the middle surface strains and curvatures are not a part 

of the summations, the laminate stiffness matrix and the hk 

terms can be combined to form new matrices defined as: 
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Aij =  

 

Bij =                     …….. (3.1.15) 

 

Dij =  

 

Hence the constitutive equations may be written in matrix 

form as: 

 

 =  ….. (3.1.16) 

     
The equation (3.1.16) may be written in contracted from as: 

 

 =                         …….. (3.1.17) 

 

The elements of matrices [A], [B], and [D] are termed as 

extension stiffnesses, coupling stiffnesses and bending 

stiffnesses respectively 

 
3.2 Free vibrations of laminated composites 

 
The equations of motion for free undamped vibration of 

laminated composites may be expressed by using the 

Hamilton principle as 

 

[M]{ } + [K]{u} = {0}             ……… (3.2.1) 

 

where [M] and [K] are system mass and stiffness matrices 

respectively, and { } and {u} are the acceleration and 

displacement vectors.  

 

Assuming a harmonic motion, the natural frequencies and the 

modes of vibration are obtained by solving the generalized 

eigenvalue problem   

  

{[K] – ω
2
[M]}X = [0]                              …….. (3.2.2) 

 

where ω is the natural frequency and X the mode of vibration. 

 

For a square laminate of side ‘a’ and thickness ‘h’, the 

eigenvalues are expressed in terms of the non-dimensional 

frequency parameter  defined as 

=                                     …….. (3.2.3) 

 
where D0 = E22h

3
/12(1-ν12ν21) , ρ is the material density, E is 

the modulus of elasticity and ν the Poisson’s coefficient. 

Also, a shear correction factor (k) is used for different 

boundary conditions. The value of ‘k’ is taken as 0.8601 for 

CCCC and CCCF plates, while for SCSC plates, k = 0.822 is 

used and for SSSS plates, k = 5/6 is considered. Here S stands 

for simply supported, C for clamped, and F for free boundary 

conditions. 

4.  Finite element formulation of laminated composites 

 

The total potential energy consists of three contributions 

associated, respectively, with in-plane strain energy, shear 

strain energy and external forces i.e.  

U = Up + Us + Uf              ……… (4.1)                                               

 

The in-plane strain energy (Up) can be divided into a 

membrane contribution and a bending contribution, and is 

given by 

Up =  =  

 

     =  

     

     = Um+Umb+Ub                              ……… (4.2)                                               

                                                                               
where Um and Ub are the potential membrane and bending 

strain energy, respectively. Umb gives the potential strain 

energy due to the coupling terms between the membrane and 

bending contributions. 

The stiffness matrix is now written as  

  =    

where is the membrane part of the stiffness matrix, 

,  are the membrane-bending coupling components, 

 is the bending part, and  is the shear part. 
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The kinetic energy of the plate is given by 

= ρ[ ]dA          … (4.3) 

 

Using the expression for kinetic energy, the mass matrix can 

be computed by the relation 

 

 = ρ NdA    

                                                                    

in which 

 

[N] =      

where ‘n’ is the number of nodes considered in the element. 

 

Using the expression for kinetic energy, the mass matrix can 

be computed by the relation 

 

 = ρ NdA   

in which 

 

[N] =       

 

where ‘n’ is the number of nodes considered in the 

element. 
 
4.3 Finite Element Modelling  

 
A square laminated composite plate of side ‘a’ is considered 

for analysis using finite element method. The Laminate 

consists of ‘N’ number of laminas. The laminas have either 0 

degree or 90 degree orientation with respect to the material 

coordinates, i.e., the lamina’s are cross-plied.  

Here, the laminated square plate is considered as the domain. 

The domain is discretized in to sub-domains/finite elements 

using 8-noded isoparametric quadratic element (serendipity 

element) as shown in fig. 4.1.  

 
Fig. 4.1:  Isoparametric quadratic element 

 

When the coordinates of the element in local coordinates (x,y) 

are mapped into natural coordinates (ξ, η), then the nodal 

shape functions are written as 

N1 =  (1 ─ ξ)(1 ─ η)(─ ξ ─ η ─ 1) 

 

N2 =   (1 ─ ξ
2
)(1 ─ η) 

 

N3 =  (1 + ξ)(1 ─ η)(ξ ─ η ─ 1) 

 

N4 =  (1 + ξ)(1 ─ η
2
) 

 

N5 =  (1 + ξ)(1 + η)(ξ + η ─ 1) 

 

N6 =   (1 ─ ξ
2
)(1 + η) 

 

N7 =  (1 ─ ξ)(1 + η)(─ ξ + η ─ 1) 

 

N8 =  (1 ─ ξ)(1 ─ η
2
) 

 
The integrals in the stiffness and mass matrices are evaluated 

numerically using the Gauss quadrature rule, in the limits of -

1 to +1, i.e. 
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Kij =  

where  is the determinant of Jacobian matrix expressed as 

4.4  Solution procedure 

 

The steps followed in the analysis are arranged in sequence as 

under : 

Step I: Select the material properties (viz. E, ν, G, ρ) for the 

lamina materials. 

Step II: Generate the mesh i.e. decide upon the number and 

size of finite elements along x and y directions. Here, 8-noded 

isoparametric quadratic elements (serendipity elements) have 

been employed for forming the mesh. 

Step III: Calculate the nodal shape functions and their 

derivatives at all the nodes of each element. 

Step IV: Generate element mass and stiffness matrices for 

each element. 

Step V: Assemble the element matrices to global matrix 

following the nodal connectivity. 

Step VI: Apply the boundary conditions. 

Step VII: Solve the global equation of motion for eigen 

values. The equation of motion for the free vibration of a plate 

is of the form 

[M]{ } + [K]{u} = {0} 

                                         or        {[K] – ω
2
[M]}X = [0] 

The eigen values indicate the natural frequency of vibration of 

the composite plates. 

Step VIII: Perform the convergence criterion by increasing 

the number of elements in x- and y-directions. 

5. RESULTS AND DISCUSSIONS 

The numerical results are obtained for two types of materials 

with the following elastic properties: 

Material I  :  E1/E2 = 40; G12 = G13 = 0.6 E2; G23 = 0.5 E2; ν12 

= 0.25. 

Material II :  E1/E2 = 25; G12 = G13 = 0.5 E2; G23 = 0.2 E2; ν12 

= 0.25. 

Table 5.1: Fundamental frequency parameters of a 3-ply 

symmetric cross-ply (90
o
/0

o
/90

o
) square laminate with 

SSSS boundary conditions for Material I 

 

a/h ratio Fundamental frequency 

parameter 

Present Ref. [5] 

5 10.2190 10.264 

10 14.7670 14.702 

20 17.5235 17.483 

50 18.6509 18.641 

100 18.8317 18.828 

 

Table 5.1 shows the values of fundamental frequency 

parameters [ =   = ( ) ] of a symmetric 

cross-ply square laminate having orientation (90
o
/0

o
/90

o
) with 

all edges simply supported (SSSS) for material I 

corresponding to different values of side to thickness ratio 

(a/h). The values of frequency parameter obtained are 

compared with those reported by Hadian and Nayfeh [5].  It is 

observed from the comparison in table that the present results 

are in very good agreement with the theoretical results of ref. 

[5]. 

The variation of fundamental frequency parameter with side to 

thickness ratio (a/h) for symmetric cross-ply (90
o
/0

o
/90

o
) 

laminated composite square plate having all edges simply 

supported (SSSS)  for material I is plotted in fig. 5.1. The 

results by Hadian and  Nayfeh [5] are also plotted in the figure. 

 
 

Fig. 5.1 Variation of fundamental frequency parameters 

with a/h ratio for symmetric cross-ply (90
o
/0

o
/90

o
) 

laminated square plate of material I with SSSS boundary 

condition 
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6. Conclusion 

Finite element analysis of symmetric cross-ply laminated 

composite square plate is carried out, using a 8–noded 

isoparametric quadratic element to predict the fundamental 

natural frequency of free vibration under different sets of 

boundary conditions. The present model is developed based 

on the First order Shear Deformation Theory (FSDT). This 

theory uses a shear correction factor to approximate the 

transverse shear stresses. A computer program is written in 

MATLAB to get various results. The accuracy of results 

obtained using the present formulation is demonstrated by 

comparing the results with existing literatures. It is concluded 

that the frequency parameter increases with increase in the 

side to thickness ratio for any set of boundary conditions at 

edges of the laminate. Also, the effect of various boundary 

conditions at edges of laminate has been analyzed. Various 

results of natural frequency are also obtained by the FEA 

software ANSYS. 
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