
Deprived Black Box Recognition of User Space Keystroke Logging 
 

G.Selvakumari
#1

,B.Tamilselvan 
#2

, K.Sridharan 
#3

 
#1

Assistant Professor of Information Technology 
#2, #3

Student of Information Technology 

SKP Engineering College, Tiruvannamalai-606611, Tamil Nadu. 
E-mail: 

#1
jayaselvi30@skpec.in, 

#2
tamizhsri3@gmail.com, 

#3
ksridharan91@gmail.com. 

 
 

Abstract - Software keyloggers are fast growing invasive 

software. The rapid growth is possibility for unprivileged 

programs running in userspace to record all the keystrokes 

typed by the users of a system. It will be run in hidden mode  

facilitates their implementation, but, at the same time, one 

allows to understand their behavior in detail manner. We 

propose a new technique that monitored keystroke sequences 

in input and observes the behavior of the keylogger in output 

to unambiguously identify it among the processes.We have 

an idea of our technique as an unprivileged application, 

hence matching the same deployment of a keylogger 

executing in hidden mode. We have evaluated the 

underlying technique against the most common keyloggers. 

This confirms the development of our scenario in practical 

framework. We have also devised evasion techniques that 

may be adopted to evade our approach and proposed a new 

method to strengthen the effectiveness of our solution 

against more attacks.  

 

Keywords –Keylogger, Black box, user space, keystroke, 

evasion technique. 

 

I. INTRODUCTION 

Keyloggers are inserted on a machine to deliberately monitor 

the user activity by logging keystrokes and sending them to a 

third party. Keyloggers are often maliciously utilized by 

attackers to pirate confidential information. Many passwords 

and credit card numbers have been stolen using key loggers 

which makes them one of the most hazardous types of 

spyware. Keyloggers can be implemented by tiny hardware 

devices or suitably in software. A software acting as a 

Keylogger can be implemented by two different techniques: 

as a kernel module or as a user-space. It is important to 

notice that, while a kernel Keylogger requires a confidential 

access to the system, a Keylogger can easily on documented 

sets of unprivileged API commonly available on operating 

systems. A user can be easily deceived in installing it, and, 

since no special authorization is required, the user can 

improperly regard it as a safe piece of software. On the 

contradictory, kernel level key loggers require a significant 

effort and knowledge for an effective and bug-free 

implementation. 

  

In this paper, we propose a new technique to detect key 

loggers handling as unprivileged user-space processes. Our 

technique is solely implemented in an unprivileged process. 

The proposed detection technique does not depend on the 

internal structure of the keylogger or the particular set of 

APIs used to capture the keystrokes. On the contradictory, 

our solution is of general applicability, since it is based on 

behavioural attributes of common to all the keyloggers.  Our 

approach has proven essential in all the cases. We have also 

evaluated the effect of false positives and false negatives in 

practical scenarios. 

   

II. OUR APPROACH 

Our approach is explicitly focused on designing a detection 

technique for unprivileged user-space keyloggers. Other 

category of keyloggers, a user-space keylogger is a 

background process which reveals operating-system-

supported hooks to surreptitiously eavesdrop keystroke 

issued by the user into the current foreground application. 

Our objective is to check user-space keyloggers from 

stealing confidential data originally studied for a legitimate 

foreground application. Malicious foreground applications 

secretly logging user-issued keystrokes and application-

specific keyloggers are outside our threat model and cannot 

be recognized using our recognition technique. Also, the 

background keylogger cannot spawn a foreground 

application and steal the current application focus on 

demand without the user immediately noticing. 

 Our model is based on these surveys and 

investigates the possibility of separating the keylogger in a 

International Journal of Advanced and Innovative Research (2278-7844) / # 233/ Volume 3 Issue 3

      © 2014 IJAIR. ALL RIGHTS RESERVED                                                                         233

mailto:#1jayaselvi30@skpec.in
mailto:#2tamizhsri3@gmail.com
mailto:#3ksridharan91@gmail.com


controlled environment, where its performance is directly 

revealed to the recognition system. Our technique involves 

monitoring the keystroke events that the keylogger receives 

in input, and constantly monitoring the I/O action created by 

the keylogger in output. To maintain detection, we purchase 

the instinct that the connection between the input and output 

of the controlled environment can be modelled for most 

keyloggers. Anyway, the modifications of the keylogger 

executes, a expected pattern observed in the keystroke 

events in input shall somehow be replicated in the I/O action 

in output. When the input and the output are managed, we 

can recognize common I/O patterns and detection. 

Additionally, preselecting the input pattern can better avoid 

bogus detections and elusion efforts. To detect background 

key logging behaviour our technique encompasses a pre-

processing step to vigorously move the focus to the 

background. This approach is also necessary to avoid 

flagging foreground applications that reasonably react to 

user-issued keystrokes as keyloggers. 

 The benefit of our technique is that it is centred 

around a black-box model that totally disregards the 

keylogger internals. Also, I/O monitoring is a nonintrusive 

mechanism and can be accomplished on multiple processes 

concurrently. As a result, our approach can deal with a large 

number of keyloggers clearly and enables a fully 

unprivileged recognition system able to vet all the processes 

running on a specific system. Our technique completely 

ignores the content of the input and the output data, and 

focuses completely on their transportation. Limiting the 

approach to a computable analysis, enables the ability to 

implement the recognition technique with only unprivileged 

medium, as we will better demonstrated. The fundamental 

model acquired, however, presents supplementary 

challenges. First, we must carefully deal with realizable data 

transformations that may determinate quantitative 

differences in the input and the output patterns. Second, the 

technique should be durable with respect to quantitative 

similarities identified in the output patterns of other legal 

system processes. The following architecture diagram which 

explains the keystroke recognition and the mouse events are 

monitored in the recognition technique.  

 

III. ARCHITECTURE 

Our design is based on five different components as depicted 

in Fig. injector, pattern translator, pattern generator, monitor, 

detector. The operating system at the bottom performs the 

needs of I/O and events. The Operating System domain does 

not introduce all the details to the upper levels without using 

confidential API calls. As a result, the monitor and the 

injector operate at another level, i.e., Stream Domain. In this 

level, keystroke events and the bytes output by a process 

arrive as a stream discharged at a specific rate. The work of 

the injector is to inject a keystroke stream to reproduce the 

behaviour of a user typing keystrokes on the keyboard. 

Similarly, the monitor document(s) a stream of bytes to 

continuously arrest the output behaviour of a specific 

process. A stream characterization is only disturbed with the 

distribution of keystrokes or bytes released over a given 

window of examination, without necessitate any additional 

qualitative information. 

 The injector accepts the input stream from the 

pattern translator, that acts as a link between the Pattern 

Domain and the Stream Domain. Similarly, the monitor 

transports the output stream registered to the pattern 

translator for furthermore surveys. In the Pattern Domain, 

the input stream and the output stream are both portrayed in  

theoretical form, termed Abstract Keystroke Pattern (AKP). 

A pattern in the AKP form is a separated and normalized 

representation of a stream. Adopting a concise and uniform 

representation is advantageous for various reasons. First, we 

allow the pattern generator to exclusively focus on 

generating an input pattern and that results a distribution of 

use. Details on how to inject a specific distribution of 

keystrokes into the system are off loaded to the pattern 

translator and the injector. And the next, the same input 

pattern can be reused to create and inject several input 

streams with different properties but following the same 

underlying distribution. Finally, the potential to reason over 

conceptual representations simplifies the role of the detector 

International Journal of Advanced and Innovative Research (2278-7844) / # 234/ Volume 3 Issue 3

      © 2014 IJAIR. ALL RIGHTS RESERVED                                                                         234



that only accepts an input pattern and an output pattern and 

makes the final decision whether detection should be 

triggered.  

A. Injector 

The role of the injector is to inject the input stream into the 

system, mimitating the behaviour of a replicated user at the 

keyboard. When the injector must satisfy several 

requirements. First, it should only depend on unprivileged 

API calls. Second, it should be ability of injecting keystrokes 

at variable rates to match the distribution of the input stream. 

Finally, the  series of results of keystroke events produced 

should be no different than those triggered by a user at the 

keyboard.  To address all these issues, we influence the same 

technique involved in automated testing. In the Windows-

based operating systems, for example, this functionality is 

assumed by the API call Send Input, accessible for several 

versions of the OS. All the other Operating Systems 

supporting the X11 window server, the same performance is 

available via the API call X Test Fake Key Event, segment 

of the XTEST supplement library. 

 

  Fig 1 System Architecture 

 

B. Monitor 

The monitor is mainly  responsible to record the output 

stream of  the running operations and, over for the injector, 

we permit only deprived API calls. In addition, we favour a 

design to perform real-time monitoring with minimal 

overhead and the foremost degree of intention possible. 

Finally, we are focused in application level stats of I/O 

activities, to evade and dealing with system-level caching or 

other possible annoyance. Providentially, most  operating 

systems provide deprived API calls to access performance 

token on a per process. If all the versions of Windows since 

Windows NT 4.0, this performance is provided by the 

Windows Management Instrumentation (WMI). In specific, 

the representation counters of each process are made 

accessible via the class Win32 Process, that carrys an  client 

query based interface. All the representation counters are 

always supported up to date by  kernel. In WMI, the counter 

Write Transfer Count includes the complete number of bytes 

the process wrote since its creation. To establish the output 

stream of a specified process, the monitor enquires the piece 

of information at regular time intervals, and documents the 

number of bytes written since the last query every time. The 

proposed approach is visibly customized to Windows 

operating systems. Nevertheless, we point out that identical 

strategies can be perceived in other OS. 

C. Pattern Translator 

The function of the pattern translator is to convert an AKP 

into a stream and respectively, specified a set of 

alignment parameters. A model in the AKP form can be 

modelled as a sequence of samples derived  from a 

stream evaluated with a uniform time interval. A sample Pi 

of a design P is an theoretical presentation of the number of 

keystrokes released during the time interval i. Each sample is 

accumulated in a formalized form in the meanwhile ½0; 1_, 

where 0 and  return the predefined minimum and maximum 

number of keystrokes in a defined  time interval. 

To modify an input pattern into a keystroke stream, the 

pattern translator appraises the following 

configuration parameters: N, the number of samples in the 

pattern; T, the constant time meanwhile linking for two 

International Journal of Advanced and Innovative Research (2278-7844) / # 235/ Volume 3 Issue 3

      © 2014 IJAIR. ALL RIGHTS RESERVED                                                                         235



consecutive samples; K max, the maximum number of 

keystrokes per sample allowed and  K min, the minimum 

number of keystrokes per sample allowed  between survey 

throughout the long term of data storage. 

The translator understands  a agreement between keystrokes 

and bytes and regards them equally as rest units of 

the input and output stream. 

D. Detector 

The outcome of our recognition algorithm lies in the ability 

to deduce a cause-effect relationship between the keystroke 

stream introduced in the system and the I/O action  of a 

keylogger process, or, more partially, between the separate 

patterns in AKP form. While one must study every candidate 

process in the method, the recognition algorithm manages on 

a single process at a time, recognizing whether there is a 

strong resemblance between the input pattern and the output 

pattern acquired from the study of the I/O behaviour of the 

objective process. Specifically, a predefined input pattern 

and an output pattern of a specific process, the objective of 

the 

detection algorithm is to regulate whether there is a match in 

the patterns and the target process can be established as a 

keylogger with good possibility. The first step in the 

establishment of a detection algorithm comes down to the 

assumption of a acceptable metric to measure the 

resemblance between two specific patterns. Given K 

investigating deputations on K distinct data files from K 

different users, it is more superior for the TPA to batch these 

various tasks together and audit at one time. Maintaining this 

natural request in mind, we somewhat modify the protocol in 

a single user case, and achieve the gathering of K 

endorsement equations (for K checking tasks) into a single 

one. As a result, a secure batch checking protocol for 

concurrent auditing of various tasks is acquired. 

 

IV. CONCLUSION 

In this paper, we presented an deprived black-box approach 

for precise recognition of the most usual 

keyloggers, user-space keyloggers. We demonstrated the 

behaviour of a keylogger by surgically connecting the input 

(i.e., the keystrokes) with the output (i.e., the I/O patterns 

produced by the keylogger). In supplement, we enlarged our 

representation with the ability to manually inject carefully 

crafted keystroke patterns. We discussed the problem of 

selecting the best input pattern to upgrade our detection rate. 

Eventually, we proposed an execution of our 

detection technique on Windows, possibly the most 

vulnerable OS to the threat of keyloggers. To construct an 

OS autonomous architecture, we also gave implementation 

feature for other operating systems. We strongly assessed 

our prototype system against the most common free 

keyloggers. Other alternative results with a home grown 

Keylogger determined the effectiveness of our method in the 

general case. 

   REFERENCES: 

[1] N. Grebennikov, “Keyloggers: How They Work and 

How to Detect Them,” 

http://www.viruslist.com/en/analysis?pubid=20479193

1,2012. 

[2]  Security Technology Ltd., “Testing and Reviews of 

Keyloggers, Monitoring Products and Spyware,” 

http://www.keylogger. org, 2012. 

[3]  E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. 

Kemmerer, 

[4] “Behavior-Based Spyware Detection,” Proc. 15th 

USENIX Security Symp., pp. 273-288, 2006. 

[5] M. Aslam, R. Idrees, M. Baig, and M. Arshad, “Anti-

Hook Shield against the Software Key Loggers,” Proc. 

Nat’l Conf. Emerging 

Technologies, pp. 189-191, 2004 

[6]  Y. Al-Hammadi and U. Aickelin, “Detecting Bots 

Based on Keylogging Activities,” Proc. Third Int’l 

Conf. Availability, Reliability and 

 Security, pp. 896-902, 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

International Journal of Advanced and Innovative Research (2278-7844) / # 236/ Volume 3 Issue 3

      © 2014 IJAIR. ALL RIGHTS RESERVED                                                                         236

http://www.viruslist.com/en/analysis?pubid=204791931,2012
http://www.viruslist.com/en/analysis?pubid=204791931,2012

