
An Improved Round Robin Based Scheduling

Algorithm with Dynamic Time Quantum Using

Contraharmonic Mean
K.Rohini

#1
, B.VijayaLakshmi

#2
, M.Swapna

#3
, V.Vasudha

#4

#
Department of Computer Science and Engineering

Gayatri vidya parishad college of engg. for women, Madhurawada, Visakhapatnam, Andhrapradesh, India.

1
krohini@gvpcew.ac.in

2
bvlakshmi@gvpcew.ac.in
3
mswapna@gvpcew.ac.in

4
vvasudha@gvpcew.ac.in

Abstract— The main objective of this paper is to improve the Round

Robin scheduling algorithm using the dynamic time slice concept.

Round Robin, considered as the most widely adopted CPU

scheduling algorithm, undergoes severe problems directly related to

quantum size. If time quantum chosen is too large, the response time

of the processes is considered too high. On the other hand, if this

quantum is too small, it increases the overhead of the CPU. We have

made a comprehensive study and analysis of RR algorithm, SRBRR

(Shortest Remaining Burst Round Robin) algorithm and proposed a

new Improved-RR version of SRBRR by assigning the processor to

processes with shortest remaining burst in round robin manner using

the Contraharmonic Mean as its time quantum; the idea of this

approach is to make the operating systems adjusts the time quantum

according to the burst time of the set of waiting processes in the

ready queue. Time quantum is computed as the Contraharmonic

Mean of the burst times. Our experimental analysis shows that

IRRCM (Improved Round Robin using Contraharmonic Mean)

performs better than RR algorithm and SRBRR in terms of reducing

the number of context switches, average waiting time and average

turnaround time.

Keywords: Operating System, Scheduling Algorithm, Round

Robin, Context switch, Waiting time, Turnaround time.

I. INTRODUCTION

Operating System is a program that controls the execution of

application programs and implements an interface between the

user of a computer and the computer hardware. In

multitasking and multiprocessing environment the way the

processes are assigned to run on the available CPUs is called

scheduling. Main goal of the scheduling is to maximize the

different performance metrics such as CPU utilization,

throughput and to minimize response time, waiting time and

turnaround time. The scheduling is used in the real time

applications like routing of data packets in computer

networking, controlling traffic in airways, roadways and

railways etc. In Round Robin (RR) every process has equal

priority and is given a time quantum after which the process is

preempted. Although RR gives improved response time and

uses shared resources efficiently, its limitations are larger

waiting time, larger turnaround time for processes with

variable CPU bursts due to use of static time quantum. This

motivates us to implement RR algorithm with sorted

remaining burst time with dynamic time quantum based on

contraharmonic mean concept.

A. Preliminaries

Modern Operating Systems are moving towards multitasking

environments which mainly depends on the CPU scheduling

algorithm since the CPU is the most effective or essential part

of the computer. The idea of multi-programming is to execute

a process until it must wait, typically for the completion of

some I/O request. The CPU is one of the primary computer

resources. The CPU scheduling is central to operating system

design. Round Robin is considered the most widely used

scheduling algorithm in CPU scheduling
[7,8]

, also used for

flow passing scheduling through a network device
[11]

.CPU

Scheduling is an essential operating system task, which is the

process of allocating the CPU to a specific process for a time

slice. Scheduling requires careful attention to ensure fairness

and avoid process starvation in the CPU. This allocation is

carried out by software known as scheduler and dispatcher
[7,

8]
. A primary function of an operating system is to determine

which processes (and, in turn, users) get to utilize the

CPU(s).CPU scheduling can be done at three different levels

as shown in figure 1.

a. Long-term Scheduling– also known as batch

scheduling. Decide which jobs/processes are allowed

into the system.

b. Short-term Scheduling– or interactive scheduling.

Decide from a collection of ready processes which

gets the CPU next.

c. Medium-term Scheduling– or memory scheduling.

Decide if/when a process should be “swapped out” or

back in based on memory available.

International Journal of Advanced and Innovative Research (2278-7844) / # 192/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 192

mailto:krohini@gvpcew.ac.in
mailto:bvlakshmi@gvpcew.ac.in
mailto:mswapna@gvpcew.ac.in

Fig. 1 Queuing diagram for scheduling

The dispatcher is the module that gives control of the

CPU to the process selected by the short-term scheduler
[7]

. A

typical process alternates between the need for CPU and the

need for I/O service throughout its lifespan. This is called the

CPU-I/O burst cycle. It is this fact that makes

multiprogramming essential. When a process needs I/O, it’s

good to have another process ready to move in and take

advantage of the available CPU resource. The amount of time

that it can make use of the CPU is known as its CPU burst

time. In time sharing system, the CPU executes multiple

processes by switching among them very fast. The number of

times CPU switches from one process to another is called as

the number of context switches. The time at which a process

arrives is its arrival time.

A program in execution is called a process.

 Processes may be categorized as
[7]

:

CPU-bound– process does not need much I/O service, almost

always want the CPU

I/O-bound– short CPU burst times, needs lots of I/O service

Interactive– short CPU burst times, lots of time waiting for

user input (keyboard, mouse)

Moreover, we should distinguish between the two schemes of

scheduling: preemptive and non preemptive algorithms.

Preemptive algorithms are those where the burst time of a

process being in execution is preempted when a higher

priority process arrives. Non preemptive algorithms are used

where the process runs to complete its burst time even a

higher priority process arrives during its execution time. The

type of processes in the system will affect the performance of

scheduling algorithms. A short-term CPU scheduling decision

is needed when a process:

i. Switches from a running to a waiting state (non-

preemptive)

ii. Switches from a running to a ready state

(preemptive)

iii. Switches from a waiting to a ready state (preemptive)

iv. terminates (non-preemptive)

There are many different scheduling algorithms which varies

in efficiency according to the holding environments, which

means what we consider a good scheduling algorithm in some

cases which is not so in others, and vice versa. The Criteria for

a good scheduling algorithm depends, among others, on the

following measures
[8]

:

a. Fairness: Processes get close to equal shares of the

CPU

b. Efficiency: Keep resources as busy as possible

c. Throughput: Number of processes that complete per

unit time

d. Waiting Time: Time a process spends waiting in

kernel’s ready queue

e. Turnaround Time: Time from process start to its

completion

f. Response Time: Amount of time from when a

request was first submitted until first response is

produced

B. Scheduling algorithms

When there are number of processes in the ready queue, the

algorithm which decides the order of execution of those

processes is called scheduling algorithm
[8]

. The various well

known CPU scheduling algorithms are First Come First Serve

(FCFS), Shortest Job First (SJF), Highest Response Ratio

Next (HRRN) and Priority. All the above four algorithms are

non-preemptive in nature and are not suitable for time sharing

systems. Shortest Remaining Time Next (SRTN) and Round

Robin (RR) are preemptive in nature. RR is most suitable for

time sharing systems.

II. RELATED WORK

The static time quantum which is a limitation of RR was

removed by taking dynamic time quantum. In the last few

years different approaches are used to increase the

performance of Round Robin scheduling like Adaptive Round

Robin Scheduling using Shortest Burst Approach Based on

Smart Time Slice
 [1]

, Multi-Dynamic time Quantum Round

Robin (MDTQRR)
[2].

Min-Max Round Robin (MMRR)
[3]

,

Self-Adjustment Time Quantum in Round Robin (SARR)
[4]

,

Dynamic Quantum with Re-adjusted Round Robin (DQRRR)
[5]

, Average Max Round Robin Algorithm (AMRR)
 [6]

. In this

paper efforts have been made to modify SRBRR
 [9]

 in order to

give better turnaround time, average waiting time and

minimize context switches.

III. PROPOSED ALGORITHM

In our IRRCM algorithm, the jobs are sorted in ascending

order of their burst time to give better turnaround time and

waiting time. Here Dynamic time quantum is calculated by

taking Contraharmonic mean of the burst times, which

generates optimal time quantum to reduce waiting time and

turnaround time in this algorithm.

International Journal of Advanced and Innovative Research (2278-7844) / # 193/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 193

The Proposed algorithm works as follows

IV. EXPERIMENTS & RESULTS

A. Assumptions

All experiments are assumed to be performed in uniprocessor

environment and all the processes are independent from each

other. Attributes like burst time and priority are known prior

to submission of process. All processes are CPU bound. No

process is I/O bound. Processes with same arrival time are

scheduled.

B. Illustration and Results

Our examples consists of several input and output parameters.

The input parameters consist of burst time, time quantum and

the number of processes. The output parameters consist of

average waiting time, average turnaround time and number of

context switches.

In IRRCM the time quantum is calculated using

Contraharmonic mean.

For n values, the contra- harmonic mean is

 (x1
2
 + x2

2
 + ... + xn

2
)/(x1 + x2 + ... + xn)

Case-I:

Let us assume five processes, with increasing burst time (P1 =

13, P2 = 35, P 3 = 46, P4 = 63, p5= 97) as shown in below

TABLE.

Process Burst Time

P1 13

P2 35

P3 46

P4 63

P5 97

TQ = round ((13
2
+35

2
+46

2
+63

2
+97

2
) /

(13+35+46+63+97))

 = round (66.48819)

 = 66

 TQ=66 TQ=31

P1 P2 P3 P4 P5 P5

0 13 48 94 157 223 254

TABLE 1:

COMPARISON BETWEEN RR, SRBRR AND PROPOSED ALGORITHM (CASE – I)

Algorithm Time Quantum Avg TAT Avg WT CS

RR 25 148.2 97.4 11

SRBRR 46,34,17 122.4 71.6 7

IRRCM 66,31 113.2 62.4 5

0

20

40

60

80

100

120

140

160

Avg TAT Avg WT CS

RR

SRBRR

IRRCM

Case-II:

Let us assume five processes, with increasing burst time (P1 =

54, P2 =32, P3 = 24, P4= 18, p5=13) as shown in below

TABLE.

Process Burst Time

P1 54

P2 32

P3 24

P4 18

P5 13

TQ = round ((54
2
+32

2
+24

2
+18

2
+13

2
) /

(54+32+24+18+13))

 = round (35.52482)

 = 36

 TQ=36 TQ=18

P5 P4 P3 P2 P1 P1

0 13 31 55 87 123 141

i. All the processes present in ready queue

are sorted in ascending order.

ii. While (ready queue!= NULL)

TQ = round (Contraharmonic mean

(burst time of all the Processes in

ready queue))

iii. Assign TQ to process

PiTQ (i=0, 1…n where n is the no.

of processes)

iv. If (i<n) then go to step 3

v. If a new process is arrived, Update the n

value and go to step1

End of while

vi. Average waiting time, average

turnaround time and no. of context

switches are calculated

vii. End

International Journal of Advanced and Innovative Research (2278-7844) / # 194/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 194

TABLE 2:

COMPARISON BETWEEN RR, SRBRR AND PROPOSED ALGORITHM (CASE – II)

Algorithm Time Quantum Avg TAT Avg WT CS

RR 25 150.8 110.5 10

SRBRR 32 89.8 49.6 7

IRRCM 36,18 83.4 43.2 5

0

20

40

60

80

100

120

140

160

Avg TAT Avg WT CS

RR

SRBRR

IRRCM

Case-III:

Let us assume five processes, with increasing burst time (P1 =

54, P2 = 99, P 3 = 5, P 4 = 27, p5= 32) as shown in below

TABLE.

Process Burst Time

P1 54

P2 99

P3 5

P4 27

P5 32

TQ = round ((54
2
+99

2
+5

2
+27

2
+32

2
) /

(54+99+5+27+32))

 = round (66.79724)

= 67

 TQ=67 TQ=32

P3 P4 P5 P1 P2 P2

0 5 32 64 118 185 217

TABLE 3:

COMPARISON BETWEEN RR, SRBRR AND PROPOSED ALGORITHM (CASE – III)

Algorithm Time Quantum Avg TAT Avg WT CS

RR 25 152.2 108.8 11

SRBRR 32,45,22 93.6 50.2 7

IRRCM 67,32 87.2 43.8 5

0

20

40

60

80

100

120

140

160

Avg TAT Avg WT CS

RR

SRBRR

IRRCM

V. CONCLUSION AND FUTURE WORK

A comparative study of simple RR algorithm and proposed

one is made. It is concluded that our new proposed algorithm

(IRRCM) is performing better than the static RR algorithm

and SRBRR algorithm in terms of average waiting time,

average turnaround time and number of context switches

thereby reducing the overhead and saving of memory space.

In future work, processes at different arrival times can be

considered for the proposed algorithm.

REFERENCES

[1]. Sarojhiranwal and D.r. K.C.Roy“Adaptive Round Robin Scheduling

using Shortest Burst Approach Based on Smart Time Slice”.volume 2,

issue 3.a

[2]. H. S. Behera, Rakesh Mohanty, Sabyasachi Sahu and Sourav Kumar

Bhoi.” Comparative performance analysis of multi-dynamic time quantum

round robin (mdtqrr) algorithm with arrival time”, ISSN: 0976-5166, Vol. 2,
No. 2, Apr-May 2011.

[3]. Sanjay Kumar Panda and Saurav Kumar Bhoi, “An Effective Round
Robin Algorithm using Min-Max Dispersion Measure” ISSN: 0975-3397,

Vol. 4 No. 01, January 2012.

[4]. R. J. Matarneh, “Self-Adjustment Time Quantum in Round Robin

Algorithm Depending on Burst Time of the Now Running Proceses”,

American Journal of Applied Sciences 6 (10), pp. 1831-1837, 2009.

[5]. H. S. Behera, R. Mohanty, and D. Nayak, “A New Proposed Dynamic

Quantum with Re-Adjusted Round Robin Scheduling Algorithm and Its
Performance Analysis,” vol. 5, no. 5, pp. 10-15, August 2010.

[6]. Pallab banerjee, probal banerjee, shweta sonali dhal,”Comparative
Performance Analysis of Average Max Round Robin Scheduling Algorithm

(AMRR) using Dynamic Time Quantum with Round Robin Scheduling

Algorithm using static Time Quantum”,IJITEE,ISSN: 2278-3075, Volume-1,
Issue-3, August 2012. F

[7] Silberschatz, Galvin and Gagne, Operating systems concepts,8th edition,

Wiley, 2009.

[8] Lingyun Yang, Jennifer M. Schopf and Ian Foster,“Conservative
Scheduling: Using predictive variance to improve scheduling decisions in

Dynamic Environments”,SuperComputing 2003, November 15-21, Phoenix,

AZ, USA.

[9]. “Prof. Rakesh Mohanty, Prof. H. S. Behera, Khusbu Patwari, Manas

Ranjan Das, Monisha Dash,Sudhashree”

International Journal of Advanced and Innovative Research (2278-7844) / # 195/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 195

Design and Performance Evaluation of a New Proposed Shortest Remaining

Burst RoundRobin (SRBRR) Scheduling Algorithm, Am. J. Applied Sci., 6
(10): 1831-1837, 2009.

[10] A.S. Tanenbaun, Modern Operating Systems.3rd Edn, Prentice Hall,
ISBN: 13: 9780136006633, pp: 1104, 2008

[11] Weiming Tong, Jing Zhao, “Quantum Varying Deficit Round Robin
Scheduling Over Priority Queues”, International Conference on

Computational Intelligence and Security. Pp.252- 256, China, 2007.

[12] William Stallings, “Operating Systems: Internals and Design Principles”

6th edition, Prentice Hall, ISBN-13:978-0136006329

International Journal of Advanced and Innovative Research (2278-7844) / # 196/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 196

