

1

Organizing User Search Histories

Pramod Shetty, Sayalee Rane, Mithilesh Tiwari, Prof. Kanchan Doke

Computer Engineering, Bharati Vidyapeeth College of Engineering

Room No-3, Omnath Aptt., Plot No – D-39, Sector – 20, Nerul(W), Navi Mumbai – 400 706, Maharashtra, India.

pramodshetty001@gmail.com

sayaleerane@gmail.com

mithi.tiwari@gmail.com

kanchankdoke@gmail.com

Abstract- Nowadays users have started making complex and

task- oriented jobs on the web like making online

transactions, booking travelling tickets etc. For the

purpose of doing this, they use search engines and they

normally break their work into some dependent tasks

which contributes to the whole task and issue multiple

queries around these steps repeatedly over a long period of

time. To better support users in their information quests

on the web, search engines keep track of their queries and

clicks while searching online. In this paper, we study

organizing a user’s historical queries into groups in a

dynamic and automated fashion. Dynamically identifying

the relationship between queries and grouping them

depending on how similar they are help the user in many

tasks, such as query suggestions, result ranking, query

alterations, sessionisation, and collaborative search. We

will be providing two algorithms in this paper, one of

which groups the queries inserted by the user and the

other algorithm describes how to use this query group to

provide more search result to the user.

Keywords - User history, search history, queries clustering,

query reformulation, task identification.

I. INTRODUCTION

As the size and content of information on the web

increases, the variety and the complexity of tasks that users try

to accomplish online also increases. Users are no longer

concerned with issuing simple navigational queries over the

web. Various studies on query logs (e.g., Yahoo’s and

AltaVista’s) reveal that only about 20 percent of queries are

navigational. The rest are informational or transactional in

nature. This is because users are pushing much broader

informational and task oriented goals such as arranging future

travel trips, managing their finances, or planning their

purchase decisions. However, the primary means of accessing

information online is still to search the keyword into a search

engine. A complex task such as travel arrangement has to be

broken down into a number of codependent steps over a

period of time by the users. For Instance, a user may first

search on possible destinations, timeline, events, etc. After

deciding when and where to go, the user may then search for

the most suitable arrangements for air tickets, rental cars,

lodging, meals, etc. Each step requires one or more queries,

and each query results in one or more clicks on relevant pages.

It is really important to manage queries entered by the

users to make a more complex and reflexive system to provide

better search results. It mostly happens that users try to search

about a particular topic but do not remember the actual

keyword to be searched for to get a more precise and

reasonable results. Thus grouping queries together based on

the similarities between them provides a better search

technique to understand the user and his or her needs.

One important step toward enabling services and

features that can help the users during their complex search

and arrangements online is the capability to identify and group

related queries together. Recently, some of the major search

engines have introduced a new and interesting feature named

as “Search History”, which allows users to track and view

their online searches by recording their queries and clicks. For

example, Fig. 1 illustrates a portion of a user’s search history

as it is shown by the Google search engine.

This history includes a sequence of four queries

displayed in reverse chronological order together with their

corresponding clicks.

Fig 1. Portion of a user’s Search History

This feature of identifying groups of related queries has

applications beyond helping the users to make sense and keep

track of queries and clicks in their search history. First of all

query grouping allows the search engine to better understands

the user’s session and behavior.

International Journal of Advanced and Innovative Research (2278-7844) / # 121/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 121

mailto:pramodshetty001@gmail.com
mailto:sayaleerane@gmail.com
mailto:mithi.tiwari@gmail.com
mailto:kanchankdoke@gmail.com

2

Once query groups have been identified, search engines

can have a good representation of the search context behind

the current query using queries and clicks in the corresponding

query group. This will help to improve the quality of key

components of search engines such as query suggestions,

result ranking, query alterations, sessionization, and

collaborative search.

II. PRELIMINARIES

A. Goal

Here our objective is to group the queries entered by the

user depending on the relation between this queries. This

query grouping will be such that two queries which are related

to each other and would probably give almost same results are

kept together. For instance, let us consider 4 queries which are

entered by user are “apple iPod”, “apple ipad”, “Microsoft

windows” and ”Bill Gates”. Then the query “apple iPod” and

“apple ipad” will be grouped together and “Microsoft

windows” and “Bill Gates” will be in same group. These

queries are related to each other by considering different

factors related to when, how, and where they are fired. As a

habitual nature, users mostly make related queries at a

particular period depending on their need. They break down

their task into many sub tasks such that all these tasks combine

to fulfill the final objective of the user. Hence consideration of

the time when the query is made and how many times they

have been fired makes sense in this algorithm.

Our goal is to automatically organize a user’s search

history into query groups, each containing one or more related

queries and their corresponding clicks. Each query group

corresponds to an atomic information need that may require a

small number of queries and clicks related to the same search

goal. For example, in the case of navigational queries, a query

group may involve as few as one query and one click (e.g.,

“cnn” and www.cnn.com). For broader informational queries,

a query group may involve a few queries and clicks.

So in all the goals of presenting this paper is to provide a

method that can be used to understand the user and his or her

needs. This method can make out what actually the user want

to search and thus depending on his query more related

keywords are matched which are then combined together, fed

to the system and final result depending on the all matched

group queries are displayed. Main application where this

method should be used is query suggestion, better result

generation, Users activity monitoring etch. Query suggestion

can help to provide more relevant query to to user. For

example if the user has forgot a word or two of a new

upcoming movie then this method can help him by providing

the full movie name. Better search results can be implemented

by adding all the results generated by the queries in the

matched query group. In this way, results which would have

been kept out will also be added to the list of final results.

The algorithm for query grouping is shown below where

the queries will be grouped depending on the value of its

relationship similarity between them. In this algorithm a

similarity value is calculated between the queries entered by

the user. Then these values are compared with threshold value

which is predefined by the system. Whether to place these

queries in the same query or not depends on the result of this

comparison. The algorithm can be explained as follows –

A) A query group is an ordered list of queries, qi,

together with the corresponding set of clicked URLs,

clki of qi. A query group is denoted as s = ({q1,

clk1}…{qk, clkk}).

B) Given: a set of existing query groups of a user, S =

{s1, s2, … sn}, and her current query and clicks, (qc,

clkc)

Find: the query group for {qc, clkc}, which is either one of

the existing query groups in S that it is most related to, or a

new query group sc = {qc, clkc} if there does not exist a query

group in S that is sufficiently related to {qc, clkc}.

A. SelectBestQueryGroup.

 Input:

A. The current query group sc containing the current

query qc and the set of clicks clks.

B. A set of existing query groups s={s1 ,s2 ,……..,sm }

C. A similarity threshold value Tsim , 0<Tsim <1.

Output: The query group s that best matches with sc , or a new

group if necessary,

 Steps

1. S=null(Ø)

2. Tmax =Tsim

3. For i=1 to n

4. If sim(sc,si)>Tmax

5. s=si

6. Tmax =sim(sc,si)

7. If s=Ø

8. S=S U sc

9. s=sc

10. Return s;

Initially a new query group is formed and named s which

is assumed to be null since it contains no query in it. This

query group s will be the final group where the query along

with other will be placed. And another query group sc is also

made which contains only the newly entered query by the

user. Then the maximum threshold to be compared with is

considered to be equal to the similarity threshold which is

predefined by the system administrators. Let us assume that

the system already contains some n number of groups each

containing sets of queries within them. Here the query group sc

is compared with all the query groups that are already present

in the system i.e. s1, s2,…. The comparison between the query

groups gives a mathematical relation between them. If this

similarity value is found to be more than the threshold value

which is predefined then the two groups sc and si are placed

together. Else the sc is made to be a new independent query

group.

III. QUERY RELEVANCE

International Journal of Advanced and Innovative Research (2278-7844) / # 122/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 122

3

Now we develop the mechanism or the formula to find

relation between the queries. This relationship or similarity is

done on the basis of 4 major factors of a query-

A. Depending on the similarity in the keywords in the

queries. i.e. two queries are assumed to be similar if

they contain more keywords in common. Thus

considering the keyword of the query to find

similarity between them is a much better way.

B. Depending on the time in which the queries are

made. Two related queries has a very high probability

of being called within a particular interval of time.

C. Depending on the frequency in which the query are

made together. Queries which are exactly related or

can be considered as the sides of the same coin are

mostly called together. So considering whether two

queries have been called together most of the times

whenever they are called makes good sense.

D. Depending on the results that are displayed by the

queries. This is another important factor which

relates two queries. Queries that have common result

sets are actually two same queries with different

wordings.

A. Jaccard

 One may assume that sc and si are somehow relevant

if the queries appear similar if the query keywords are

considered. More the number of similar words in the query,

more the queries are related to each other.

On a different note, we may assume that two query

groups are similar if their queries are textually similar. Textual

similarity between two sets of words can be measured by

metrics such as the fraction of overlapping words (Jaccard

similarity) or characters (Levenshtein similarity). We can thus

define the following two text based relevance metrics that can

be used in place of sim.

Simjaccard(sc, si) is defined as the fraction of common

words between qc and qi as follows:

 Simjaccard(sc,si)=

 (1)

For example, if we consider two queries “American

hustle” and “American idol”, then with the above formula we

have Similarity measurement value to be equal to 1/3 since 1

word is common in both the queries and the total no. of

distinct words in the two queries are 3. If the threshold

similarity we took is less than 0.33 then these two above

queries will be placed in the same group.

B. Time

It is assumed that related queries are always fired within a

fixed interval of time by the same user. This characteristic of

user’s psychology is used here to group the queries depending

on the time the queries have been fired.

One may assume that sc and si are somehow relevant if the

queries appear close to each other in time in the user’s history.

In other words, we assume that users generally issue very

similar queries and clicks within a short period of time. In this

case, we define the following time-based relevance metric

simtime that can be used in place of sim.

Simtime(sc, si) is defined as the inverse of the time interval

(e.g., in seconds) between the times that qc and qi are issued,

as follows:

 Simtime(sc,si) =

 (2)

For example, if two queries named “Oppa Ganganam

style” and “Psy songs” are fired between a fixed interval of

time which is the similarity threshold then this two queries

will be placed together. The possibility that two related

queries will be always placed together is more since there is a

higher probablity of their reference within an interval of time.

C. Coefficient of Retrieved Pages (CoR)

The results a query generate makes species the scope of

that query. If another query generates almost the same set of

results as that of the previous query, then we can say that the

two queries are similar and ought to be in the same group.

CoR is based on the principle that pair of queries is

similar if they tend to retrieve similar pages on a search

engine. This approach is similar to the ones discussed above.

Simcor(sc, si) is the Jaccard coefficient of qc’s set of

retrieved pages retrieved(qc) and qi’s set of retrieved pages

retrieved(qi) and is defined as:

 Simcor(sc,si) =

 (3)

For example, consider two queries “Google nexus” and

“Google phones”. Since there is large possibility of these two

queries to retrieve similar results, the two queries will be

placed in the same group. As in the above example, If the

common results found by the two queries will be 15 and

union of the results by the two queries are 30 then the above

similarity value will be 0.5.

D. ATSP

Two queries can be assumed to be lying in the same

group if both of these are frequently called after each other.

This phenomenon makes it sure that both these queries have

some relationship.

This technique is based on the principle that two queries

issued in succession in the search logs are closely related. The

authors present a solution that first reorders a sequence of user

queries to group similar queries together by solving an

instance of the ATSP. Once the queries are reordered, query

groups are generated by determining “cut points” in the chain

of queries, i.e., two successive queries whose similarity is less

than a threshold. Note that ATSP needs to operate on the

whole set of queries that we are interested in grouping as it

involves an initial reordering step.

SimATSP(sc, si) is defined as the number of times two

queries, qc and qi, appear in succession in the search logs over

the number of times qc appears :

International Journal of Advanced and Innovative Research (2278-7844) / # 123/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 123

4

simATSP(sc,si) =

 (4)

For example, two queries are frequently fired back to

back in a search engine then the two of them will be grouped

together.

IV. RESULT GENERATION USING GROUPS

Result displaying algorithm based on the query groups

 Steps:

1. Entered Query (qc) is mapped using

SelectBestQueryGroup algorithm.

2. Mapped query groups (qc) contain query groups (q1,

q2, q3…., qm).

3. ResultSet=null.

4. For i = 1 to m

 If (qc (sim (qi)))

 ResultSet+=Result (qi);

5. ResultSet+=Result(qc)

6. Display ResultSet.

This algorithm is used for the purpose of presenting the

result of the entered query by the user using the query groups

in which the entered query lies.

Suppose the entered query is qc and the matched query

group is sc containing query sets q1,q2,q3, … qm. The ResultSet

in the algorithm is the final result to be displayed by the

system. Initially, the system assumes the ResultSet to be null.

Then the system searches for each query in the query

group to contain similar keyword as qc. If such query is found

in the query group, then the result of that matched query is

added to the final ResultSet.

Finally when this process is completed, the query qc is

searched directly in the database to find any exempted result.

All this results are then finally displayed to the user in which

more indexing priority is given to the ResultSet obtained by

the query group.

V. CONCLUSION

The query grouping depending on the relation between

them contains useful information on user behavior and motive

when making a search online. Here, in this paper, we show

how information like dependency between queries can be used

effectively for organizing user search histories into query

groups. As future work, we intend to investigate the usefulness

of the knowledge gained from these query groups in various

applications such as providing query suggestions and biasing

the ranking of search results. Thus grouping queries together

based on the similarities between them provides a better

search technique to understand the user and his or her needs.

ACKNOWLEDGMENT

Our most sincere appreciation are to all the people

who have helped and inspired us throughout the working of

this project. Firstly we are thankful to our principle Dr. M. Z.

Shaikh for his help. We are extremely grateful for his friendly

support and professionalism. We express our heartfelt

gratitude to our Head of Department Prof. D. R. Ingle and our

project coordinator Prof. B. W. Balkhande for their help and

support. This task would not have been possible without the

help and guidance of our project guide Prof. Kanchan Doke.

We are also convening special thanks to all staff of Computer

Engineering Department for their support and help. Last but

not least, we are very much thankful to our friends who

directly or indirectly helped us in completion of the project

report.

REFERENCES

[1]. J. Teevan, E. Adar, R. Jones, and M.A.S. Potts, “Information Re-

Retrieval: Repeat Queries in Yahoo’s Logs,” Proc. 30th Ann. Int’l ACM
SIGIR Conf. Research and Development in Information Retrieval (SIGIR ’07),

pp. 151-158, 2007.

[2]. A. Broder, “A Taxonomy of Web Search,” SIGIR Forum, vol. 36, no. 2,
pp. 3-10, 2002.

[3]. W. Barbakh and C. Fyfe, “Online Clustering Algorithms,” Int’l J. Neural

Systems, vol. 18, no. 3, pp. 185-194, 2008.
[4]. J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan

Kaufmann, 2000.

International Journal of Advanced and Innovative Research (2278-7844) / # 124/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 124

