
Effective Detection and Security of Source Code

Theft based on Software Birthmark

R. Karthikeyan, K.G.S. Venkatesan, R. Saravanan

Department of Computer Science, Bharath University

Chennai-600073, INDIA.

rkarthikeyan1678@gmail.com

venkatesh.kgs@gmail.com

Saravananr1190@gmail.com

Abstract—Today Internet has become part of the life for

each and every person at all the corner of the earth. Web Page

has been the main object in the Internet communications.

These web pages are made of several bytes of soft

codes(software). There are as many open source papers

available in the Internet. Software theft(plagiarism) has

become a very serious threat. Java script has been a much

common language for creating web pages. Apart from the

previous methods available, Software Birthmark is being used

to detect the code theft. Although it has been used in previous

methodologies, here the method produces a result with an

accuracy of 100%. We use more effective technique,

Improved Graph Selector, Faster Detector. Despite of

detection of threats or Hackers, we also provide security by

blocking the unauthorized users from entering into the

Database. And those unauthorized users can also not use the

details stored in the Database.

Key Words—Code Theft, Software Birthmark, Plagiarism,

Improved Graph Selector, Faster Detector.

I. INTRODUCTION

“Internet” has been the most curious word, which we

come over every day in our life. Today’s world moves over

exchanging of data through internet. Java script is one of

the commonly used languages for creating web pages.

Software protection continues to be an important topic for

computer scientists. Intruders use many ways to detect the

source code and transform the originality to their own

model. They create their own Websites, just by hacking the

source code from the original web pages. According to a

survey from Evans Data in 2008 [2], over 66% of 3GL

and scripting language use, including Java. Hiding of

source code includes works only for a certain level. And it

has been conquered in an efficient way by the intruders.

Protecting the code from the intruders has become a

serious issue for today’s researchers and web page

developers. Some of the previous methods have been used

so as to protect the intruders are listed-Code Obfuscation,

Water Marking. “Code Obfuscation” is a methodology in

which we use symbols and other variables in a calculated

manner in order to replace the original characters. To say

technically, Code obfuscation is a semantics-preserving

transformation of the source code that makes it more

difficult to understand and reverse engineer. However, it

only prevents others from learning the logic of the source

code but does not protect them from being copied.

While Watermarking is a technique that was well-

known and one of the earliest approaches to detect software

theft. In order to protect the program, a water mark is being

inserted into the original source, that determines the

ownership of the program. Watermarking also requires the

owner to take extra action (embed the watermark into the

software) prior to releasing the software. However, it is

believed that “a sufficiently determined attacker will

eventually be able to defeat any watermark.” [3]

A relatively new but less popular software theft

detection technique is software birthmark. Software

birthmark does not require any code being added to the

software. It depends solely on the intrinsic characteristics

of a program to determine the similarity between two

programs. In our words, it is to say that every program has

their own originality. The behaviour of the program

remains same in the copied program also. Thus we can

easily determine the Piracy. If once the source code is

hacked from the original user page, it has to be used

somewhere to create another duplicate page. And the

intruder uses his name so as to maintain him as the original

user of the web page. In this case, Birthmark has been the

main characteristic to determine the originality and detect

the intruders and withdraw his permission.

According to Wang et al.[4], a birthmark is a unique

characteristic a program possesses that can be used to

identify the program. To detect software theft, the

birthmark of the program under protection (the plaintiff

program) is first extracted. The suspected program is then

searched against the birthmark. If the birthmark is found, it

is highly likely that the suspected program (or part of it) is

a copy of the plaintiff program.

International Journal of Advanced and Innovative Research (2278-7844) / # 58/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 58

mailto:rkarthikeyan1678@gmail.com
mailto:venkatesh.kgs@gmail.com
mailto:Saravananr1190@gmail.com

II. PROBLEM STATEMENT

In software birthmark [9], to help detect code theft of

JavaScript programs. A defect may be

a distinctive characteristic a program possesses that

may be wont to establish the program. we have a tendency

to extend 2 recent defect systems that extract

the defect of code from the run-time heap.

A birthmark can help them to prove code theft by

identifying intrinsic properties of a program.

with constant nevus are probably to share a typical origin.

Birth marking works above all for code that wasn't

protected by tamper-resistant copyright notices that

otherwise may prove possession. we tend to propose a

dynamic nevus for Java that observes however a program

uses objects provided by the Java commonplace API.

To detect theft of Java class files efficiently, we have to

date planned an inspiration of Java birthmarks. Since the

birthmarks square measure distinctive and native

characteristics of each category file, a category file with a

similar mar of another may be simply suspected as a

duplicate. Performance and tolerance of the birthmarks

against subtle attacks had not been evaluated well.. we

demonstrate that the proposed birthmarks successfully

distinguish non-copied files in practical Java application

(97.905%).

There are two categories in software birthmarks. Static

birthmarks and Dynamic birthmarks. Static birthmarks are

extracted from the syntactic structure of a program.

Dynamic birthmarks are extracted from the dynamic

behaviour of a program at run-time.[4]

Methods such code obfuscation changes only the static

behaviour of the program, that is the syntactic structure.

While Birthmark uses the characteristic of the program,

which uses to protect the Dynamic behaviour of the

program. A redesigned heap graph based birthmark for

JavaScript is used to make it a scalable and robust solution

for detecting software theft. A heap graph is a simple

directed graph in which the nodes represent the objects and

the edges represent the references between them. The

number of hits on the original web page is noted. The

hitter’s address are also being noted. Drawing the heap

graph shows the result of all the hitters over the Original

page. Once if the suspect is to be found, a graph Merger is

used. That uses Graph Monomorphism so as to eliminate

the recursive or repeated objects from the Heap Graph. [5]

We use above related works for use and also we work on

the birthmark technology. The birthmark mainly deals with

the comparison of the two set of codes. The final result of

the comparison will be the detection of the duplicate one

used. The higher level of security by blocking the user

from using the source in any way what so ever is done here

in this paper.

III.SYSTEM ARCHITECTURE

The System architecture shows the clear overview of the

paper.

Fig. 1. System Architecture overview of a Detection using software

birthmark.

International Journal of Advanced and Innovative Research (2278-7844) / # 59/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 59

The architecture consists of 5 major parts.

1. Admin Login

2. Admin Window

3. Graph Generator

4. Graph Merger

5. Faster Detector Using Software Birth Mark

Admin Login:

Every Server has their own login details so as to get

entered. But there must only one authenticated Admin for

every Server. If there exists more than one Admin, there may

exist lots of confusion for entering the server. This might also

lead to the dangerous threat of even crashing the whole server

space. So, for authenticated and much safer use, we use only

one Authenticated Admin. The Login window As usual has its

own entry details such as User Id, Pass code. May be thee

method is traditional and older for use, but gives a bit of

security to server.

Admin Window:

Initially Java Script Heap Profiler was used in the referred

base paper. That collects all the information of the users,

hitting the original server or web page. It just collects identity

of the users hitting and keeps track of the objectives they use

in the Web Page. JavaScript heap keeps changing due to

object creations and garbage collections. Simply to say Admin

Window has the control over the Birthmarks [2]. It just

manages to find the details, those are collected by the Java

Script Heap Profiler as in base paper. Similar to the profiler

we can just visit details of all the users hitting the server.

Graph Generator:

Java has an ability to collect all the garbage to it. While

excess of garbage leads to loss of data. Which appears to be

eliminated in this paper apart from the base paper. Overload is

to be reduced. A simple heap graph is drawn through the data

collected. A Graph Generator is used so as to generate a heap

graph from the collected details. In the collected details, each

and every details are being used to draw many Accumulated

graphs. This graph appears to be a Larger one so we use a

Graph Merger for reducing it to a single graph. And also make

it to a more understandable manner.

Graph Merger:

A unique ID assigned to every object in the JavaScript

heap by the V8 JavaScript engine. Moreover, the ID of an

object does not change across multiple dumps and therefore,

can be used to identify the object. The Graph Generator also

annotates each node in the heap graph with its object ID. The

graph merger takes multiple heap graphs as input and outputs

a superimposition of them (one single graph) that includes all

the nodes and edges appearing in the input heap graphs.

Sub-Graph Selector :

 There are n number of graphs generated by the graph

generator. Even after filtering unnecessary user’s graphs, there

are many number of graph. These graphs are later merged into

a Single graph by the Graph Merger. The Larger graph has

further sub-graphs. These are being selected one by one to

check out for the comparison with the Birthmark Original

Source program. The Sub-graph selector mainly does the

work of selecting the individual objects from the individual

windows [3]. Objects mainly refer to the individual users

entering the server window. The nodes in the Heap graph are

the individual objects, they are nothing but the individual

users.

Faster Detector Using Software Birth Mark:

As said earlier in the Sub-Graph Selector, the detection

process is being carried out in the detector. Detector which is

a main tool in the Base Paper, has some disadvantage of time

consumption in the method. The Birthmark of the program of

the suspect is compared with the birthmark of the original

source program [6]. Since each and every birthmark has their

own identity, even the changed template of the suspect’s

program has the same birthmark of the original source

program. This is the reason why this method has an accuracy

of 100%. To overcome the previous paper’s complaining

issues, in this paper we are using a more Faster detector to

reduce the time consumption. And increase the efficiency for

finding the intruder or suspect’s program.

III. IMPLEMENTATION AND TECHNOLOGIES

In this paper, I have implemented the concept of “Software

birthmark”. This does not require any code being added to the

software. No syntactic or semantic requirements are added. Or

no modulations are made to the original source code. The

above matters deal only with the static characteristics of the

program. While Birthmark depends solely on the intrinsic

characteristics of a program to determine the similarity

between two programs. It is to prove that software birthmark

is very practical and more effective in detecting software theft

that even adopts advanced evasion techniques. Heap graph

stores the addresses that hits the original code for every time

interval. In software birthmark, to help detect code theft of

JavaScript programs. A birthmark is a unique characteristic a

program possesses that can be used to identify the program.

We extend two recent birthmark systems that extract the

birthmark of software from the run-time heap.

International Journal of Advanced and Innovative Research (2278-7844) / # 60/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 60

 The modules used such as Admin Login, Admin Window,

Graph generator, Graph Merger are simpler to design, also to

understand and are much effective in use. The tools such as

Java script, SQL are more common and can be used in

common by most of the software developers and users. This

makes this paper much feasible to the day today’s works. It is

also in an more ease of use.

Here I have used the following technologies

 Collections

 JSP

 Servlet

 Thread

 Ms SQL server 2005

JSP :

In our paper we are using JSP to design the application

process. JSP pages easily combine static templates, including

HTML or XML fragments, with code that generates dynamic

content.JSP pages are compiled dynamically into

servlets once requested, thus page authors will easily make

updates to presentation code. JSP pages can also be

precompiled if desired.

Servlet:

In our paper we are using servlet to control the application

process. Servlets are modules that run within the server and

receive and reply to the requests created by the consumer.

Servlet retrieve most of the parameters mistreatment the input

stream Associate in Nursing send their

responses mistreatment an output stream.

Thread:

In this paper threading concept is very important. A

thread could be a successive path of code execution at

intervals a program. And each thread has its own local

variables, program counter and lifetime. Like creation of a

single thread, we can also create more than one thread [8 -

9]. Runnable to make our paper efficient and dynamic. In our

paper we are using request process with the help of multi

threading concepts.

MS SQL server 2005:

In this paper first we create one database for managing

table that table are containing user personal information and

perform the data communicate with other table and perform

table related to this paper

IV. EVALUATION RESULTS AND SCREEN SHOTS

After checking the practical results of the users hitting the

server. We have determined a simple table as under.

TABLE I
ACCURACY OF THE RESULT

 Detection

Result

Manual

Result

Accuracy

No. of

Hitters

12 12 100%

The above table shows the result of the number of hitters

found during detection. By checking the result with the

manual count of the number of hitters over the server, it

produces an accuracy of 100%. This is found to be a much

effective one than in the previous papers those produce only

98%.

Fig. 1. Login Screen

International Journal of Advanced and Innovative Research (2278-7844) / # 61/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 61

Fig . 2. Registration

Fig. 3. JavaScript Heap Profiler

Fig. 4. Graph Generator and Filter

Fig. 5. Detector using Software Birthmark

International Journal of Advanced and Innovative Research (2278-7844) / # 62/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 62

V. CONCLUSION

 The Main Goal/Objective of the paper is to provide

security for the source code of the web pages. The Original

developer of the code is affected in many ways by the

intruders/hackers technically and also economically. Despite

several methods such as Code Obfuscation and Code

Watermarking, the intruders keep on breaking the security

threats to breach the source code. This makes a heavy loss for

the developers and Original users both mentally and

financially in an effective way. The main concept used in this

paper is “Birth Marking”. A Birthmark can help them to prove

code theft by identifying intrinsic properties of a program.

While code obfuscation and watermarking deal with the static

behavior of the source code. To hack in a dynamic mode, it

becomes easier for the hackers. The proper system design

makes effective Admin control over the birth mark rather in

the previous Birth Mark related papers. As discussed earlier,

some of the research papers have given a result of 98% over

the years. This paper produces a result at an accuracy of

100%. As discussed in earlier in the paper, the control over

the database is provided to the administrator. Using this

control, the administrator can enter the database and he can

restrict the permission of the user from unauthorized user.

ACKNOWLEDGMENT

The author would like to thank the Vice Chancellor, Dean-

Engineering, Director, Secretary, Correspondent, Principal,

HOD of Computer Science & Engineering, Dr.

K.P. Kaliyamurthie, Bharath University, Chennai for their

motivation and constant encouragement. The author would

like to specially thank Dr. A. Kumaravel for his guidance and

for critical review of this manuscript and for his valuable input

and fruitful discussions in completing the work and the

Faculty Members of Department of Computer Science &

Engineering. Also, he takes privilege in extending gratitude to

his parents and family members who rendered their support

throughout this Research work.

REFERENCES

[1] “Heap Graph Based Software Theft Detection,” Patrick P. F. Chan,
Student Member, IEEE, Lucas C. K. Hui, Senior Member, IEEE,

and S.M. Yiu, Member, IEEE, 2013

[2] E. Data, JavaScript Dominates EMEA Development Jan.

2008[Online]. Available:

http://www.evansdata.com/press/viewRelease.

 php?pressID=127

[3] C. Collberg and C. Thomborson, “Software watermarking: Models

and dynamic embeddings,” in Proc. Symp. Principles of
Programming Languages (POPL’99), 1999, pp. 311–324.

[4] H. Tamada, M. Nakamura, and A. Monden, “Design and
evaluation of birthmarks for detecting theft of java programs,” in

Proc. IASTED Int. Conf. Software Eng., 2004, pp. 569–575.

[5] Wang,Y.-C. Jhi, S. Zhu, and P. Liu, “Behavior based software

theft detection,” in Proc. 16th ACM Conf. Comput. and Commun.

Security (CCS ’09), New York, 2009, pp. 280–290, ACM.

[6] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic
birthmark for java,” in Proc. 22nd IEEE/ACM Int. Conf.

Automated Software Eng. (ASE ’07), New York, 2007, pp. 274–

283, ACM.

[7] Detecting Software Theft via Whole Program Path Birthmarks

Ginger Myles Christian Collberg {mylesg,collberg}
@cs.arizona.edu, University of Arizona, Department of Computer

Science , 2004

[8] “Dynamic Path Based Software Watermarking” by C.Collberg in

the year 2001.

[9] Dynamic Software Birthmarks to Detect the Theft of Windows
Applications, Haruaki Tamada Keiji Okamoto Masahide

Nakamura Akito Monden Kenichi Matsumoto Graduate School

of Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan,

+

International Journal of Advanced and Innovative Research (2278-7844) / # 63/ Volume 3 Issue 3

 © 2014 IJAIR. ALL RIGHTS RESERVED 63

