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Abstract- We study the problem of clustering 

probabilistic graphs. Similar to the problem of clustering  

standard graphs, probabilistic graph clustering  has 

numerous applications, such as finding complexes in 

probabilistic protein-protein interaction (PPI) networks 

and discovering groups of users in affiliation networks. We 

extend the edit-distance-based definition of graph clustering 

to probabilistic graphs. We establish a connection between 

our objective function and correlation clustering to propose 

practical approximation algorithms for our problem. A 

benefit of our approach is that our objective function is 

parameter-free. Therefore, the number of clusters is part of 

the output. We also develop methods for testing the 

statistical significance of the output clustering and study the 

case of noisy clustering. Using a real protein-protein 

interaction network and ground-truth data, we show that 

our methods discover the correct number of clusters and 

identify established protein relationships. Finally, we show 

the practicality of our techniques using a large social 

network of Yahoo! users consisting of one billion edges. 

I. INTRODUCTION 

     We focus on the problem of partitioning a probabilistic 

graph into clusters. This is a fundamental problem for 

probabilistic graphs, just as it is for deterministic graphs. 

Partitioning a probabilistic graph into clusters has many 

applications such as finding complexes in protein-protein 

interaction networks and communities of users in social 

networks. A straightforward approach to clustering 

probabilistic graphs is to heuristically cast the probability of 

every edge into a weight and apply existing graph- clustering 

algorithms [4] on this weighted graph. This approach is 

problematic; not only there is no meaningful way to perform 

such a casting, but also there is no easy way to present a 

principled approach to probabilistic graph clustering. Motivated 

by the possible- world semantics of probabilistic databases [5], 

[6] and probabilistic graphs [7], [8], we treat every probabilistic 

graph G as a generative model for deterministic graphs. Each 

such deterministic graph is a possible world of G and is 

associated with a probability to be generated. 

     Consider a deterministic graph G and a partitioning, C, of 

the nodes in V.A clustering objective function quantifies the 

cost of the clustering C with respect to G. The possible world 

semantics dictate that the cost of a clustering C for a 

probabilistic graph G is the expected value. 

     Although this generalization is natural, it raises 

computational concerns. For instance, evaluating using the 

definition of expectation requires considering all, exponentially 

many, possible worlds of G. Further, the expectation of well-

established clustering objective functions (e.g., the maximum 

cluster diameter), is infinite since, typically, there exist possible 

worlds where parts of the graph are disconnected. Therefore, 

new definitions of the clustering problem in probabilistic 

graphs are necessary. 

     We view clustering C as a cluster graph, i.e., a graph 

consisting of disconnected cliques. Our optimization function is 

the edit distance between G and cluster graph C. In other 

words, it is the number of edges that we need to add and 

remove from G to get C. Given a probabilistic graph G, we 

define PCLUSTEREDIT as the problem of finding the cluster 

graph C that has the minimum expected edit distance from G. 

Our problem is a generalization of the CLUSTEREDIT 

problem introduced by Shamir et al. [9] for deterministic 

graphs. 

     Our framework for clustering probabilistic graphs has many 

desirable features. First, our objective function can be 

computed in polynomial time. That is, we avoid its evaluation 

for every possible world of G. Further, the value of our 

objective function is never infinity; it is bounded by the number 

of node pairs in the graph. Also, the variance of our objective to 

any clustering depends solely on the graph and not on the 

specific clustering. This indicates that the edit distance is a 

robust objective for clustering probabilistic graphs. Finally, our 

objective is parameter free, hence, the number of clusters is part 

of the output 

II. TRANSACTIONS on KNOWLEDGE and DATA 

ENGINEERING 

     In our contributions we give a new definition of clustering in 

probabilistic graphs based on graph edit distance and we 

establish a connection between our problem and correlation 

clustering [10]. We exploit this connection in order to design 

efficient algorithms for clustering large probabilistic graphs. 

Our algorithms also provide approximation guarantees. Further, 
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we establish a framework to compute deviations of a random 

world from the discovered clustering and to test the statistical 

significance of the resulting clustering. Also, we study versions 

of our problem where the target clustering is itself noisy. Our 

experimental evaluation on a probabilistic protein-protein 

interaction network shows that our algorithms discover the 

correct number of clusters and identify known co-complex 

relationships among proteins. We also show that they can 

efficiently cluster a probabilistic social network from Yahoo! 

Groups with one billion edges. 

     Discussion: Our framework outputs a partition of the nodes 

of the probabilistic graph into groups. That is, it does not 

support probabilistic membership of nodes to clusters. 

Extending the proposed framework to find probabilistic 

assignments to clusters or identify overlapping clusters is 

material for future work. 

      We define the basic version of the PCLUSTEREDIT 

problem and give algorithms for solving it. Some extensions to 

the basic PCLUSTEREDIT problem are presented. We present 

a thorough experimental evaluation on real data sets. To the 

best of our knowledge, we are the first to define and study the 

problem of clustering probabilistic graphs using the possible-

worlds semantics. However, uncertain data management and 

graph mining has motivated many studies in the data mining 

and database community. We highlight some of this work here. 

III. GRAPH and PROBABILISTIC-GRAPH MINING 

     Clustering and partitioning of deterministic graphs has been 

an active area of research [11], [12], [13]. For an extensive 

survey on the topic see [4] and the references there in. Most of 

these algorithms can be used to handle probabilistic graphs, 

either by considering the edge probabilities as weight, or by 

setting a threshold value to the probabilities of the edges and 

ignoring any edge with probability below this thresh- old. The 

disadvantage of the first approach is that once probabilities are 

interpreted as weights, then no other weights can be taken into 

consideration (unless the probabilities are multiplied with edge 

weights—in which case this composite weight has no 

interpretation). The disadvantage of the second approach is that 

there is no principled way of deciding what the right value of 

the threshold is. Although both the above methodologies would 

result in an algorithm that would output some node clustering, 

this algorithm, contrary to ours, would not optimize an 

objective defined over all possible worlds of the input 

probabilistic graph. 

     Further, various graph mining problems have been studied 

recently assuming uncertain graphs [5], [12], [15], [10], [7], [8], 

[9]. For example, Hintsanen and Toivonen [15] looked at the 

problem of finding the most reliable sub graph, and Zou [3] 

considered the problem of finding frequent sub graphs of an 

input probabilistic graph. More recently, Potamias [7] proposed 

new robust distance functions between nodes in probabilistic 

graphs that extend shortest path distances from deterministic 

graphs and proposed methods to compute them efficiently. The 

problem of finding shortest paths in probabilistic graphs based 

on transportation networks has also been considered [7], [10]. 

The intersection between the above methods and ours is that all 

of them deal with probabilistic graphs. However, the graph-

clustering task under the possible- world’s semantics has not 

yet been addressed by researchers in probabilistic graph 

mining. 

IV.DATA MINING on UNCERTAIN DATA 

     Data mining over uncertain data has also received a lot of 

attention. Several classical data-mining problems have been 

revisited in the context of uncertainty. Examples include 

clustering of relational data, frequent-pattern mining and 

evaluating spatial queries. All these works are tailored to model 

uncertain multidimensional data where uncertainty is associated 

either with the location of the data points in the space or with 

the actual existence of the data point in the data set. One could 

think of defining probabilistic-graph clustering using the same 

ideas as those used for clustering uncertain multidimensional 

data. After all, the main idea there is to consider as an objective 

the expectation of standard clustering optimization criteria 

across all possible worlds [7]. It may be tempting to try and use 

the same definitions for probabilistic graphs, particularly since 

standard clustering objectives (e.g., k-centre or k-median) can 

be optimized in deterministic graphs. However, there is a 

fundamental difficulty with such clustering definitions in the 

probabilistic-graph setting: since there are many worlds where 

parts of the graph are disconnected, the distance (or proximity) 

of a node to any of the existing clustering centres can be 

infinity. Indeed, for nontrivial probabilistic graphs, there is 

always a nonzero probability of having a node with infinite 

distance to all the cluster centres. In that case, the optimization 

function becomes infinity. Therefore, new definitions of the 

clustering problem in probabilistic graphs are necessary. This 

paper addresses this challenge. 

V.PROBABILISTIC DATABASES 

     Probabilistic databases is an- other active research area, 

mostly focusing on the development of methods for storing, 

managing, and querying probabilistic data [12]. There exists 

fundamental work on the complexity of query evaluation on 

such data [6], on the computation of approximate answers to 

queries [11], [13] and on efficient evaluation of top-k queries 

[5], [6], [7], [8], [9]. Although we borrow the possible-world 

semantics pioneered by the probabilistic-database community, 

the computational problems we address here are different and 

require the development of new methodologies. 

V1.THE PROBABILISTIC GRAPH MODEL 

     Similar to deterministic graphs, probabilistic graphs may be 

undirected or directed and carry additional labels on the edges 

(such as weights). We focus on undirected 

Probabilistic graphs. Our model assumes independence among 

edges. 

     We represent a probabilistic graph G using tuple 

corresponds to the set of nodes in G, and we assume that. P 

maps every pair of nodes to a real number in uv represents the 

probability that edge exists. For weighted graphs we also use W 

to denote the weight associated with every edge. In this paper 

we focus on unweighted probabilistic graphs. In this case, we 
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represent the probabilistic graph as G. For a probabilistic graph 

G we define its complement to be the probabilistic graph G0. 

     One can think of a probabilistic graph as a generative model 

for deterministic graphs. 

VII.DETERMINISTIC CLUSTER GRAPHS 

     In this section, we formulate the problem of clustering in 

probabilistic graphs as an optimization problem. First, we 

define the edit distance between two graphs. Then, we 

generalize this definition for probabilistic graphs and use it to 

define our graph-clustering problem. 

     A central notion for the remainder of our analysis is the 

cluster graph. A cluster graph is a special deterministic graph 

that consists of vertex-disjoint disconnected cliques. 

VIII.ALGORITHMS 

     One could solve the PCLUSTEREDIT problem using the 

following heuristic. First, decide on a threshold and ignore all 

edges that exist with probabilities below this threshold. Then, 

leverage an existing algorithm for clustering deterministic 

graphs to partition the points into clusters. Such an algorithm 

would have the following disadvantages: first, the choice of 

threshold seems arbitrary. Second, it will be very hard to prove 

that such an algorithm is an approximation algorithm for the 

PCLUSTEREDIT problem. In fact, it is not clear what is the 

objective that such an algorithm optimizes neither is it clear 

what the expectation of this objective over all possible worlds 

is. 

     Our algorithms for the PCLUSTEREDIT problem exploit 

the connection between our problem and the problems of 

correlation clustering [10] and clustering aggregation [12], [13]. 

Therefore, before describing the algorithms themselves we give 

a brief introduction CORRELATION CLUSTERING and 

highlight its connection to PCLUSTEREDIT. 

     We can compute the value of E by creating random 

instances and counting the fraction of instances in which the 

cost of the original cluster graph C is less than the cost of its 

randomized versions. The E of a clustering takes values in the 

closer this value is to 1 the larger the confidence that clustering 

C is statistically significant. 

IX.ALTERNATIVE CLUSTERING DEFINITIONS 

     We briefly discuss some alternative clustering optimization 

functions; CLUSTEREDIT for the most-probable world. This 

problem can be mapped to an unweighted instance of the 

Correlation Clustering. In particular, the most probable world 

can be easily constructed 

X.EXPERIMENTS 

     In this section, we present an experimental evaluation of our 

methodology. Our experiments verify that our algorithms 

output clustering that is meaningful and statistically significant. 

We also demonstrate that our approximation algorithm 

pKwikCluster scales well and can handle real-world social 

networks with more than one billion edges. Finally, we show 

that pKwikCluster scales linearly in synthetic scale-free graphs. 

We ran all experiments on a Linux server with eight AMD 

Opteron processors with 64 GB memory. All methods have 

been implemented in C++. 

X.PROTEIN-PROTEIN INTERACTION NETWORK: THE 

CORE DATA SET 

     For this experiment, we used the core interaction network 

provided by Krogan et al. The network consists of 2,708 nodes 

that correspond to proteins. There are 7,123 protein interactions 

that correspond to the network edges. The edge probabilities 

encode the confidence of the interaction between nodes. We 

refer to this network as CORE and we denote the underlying 

probabilistic graph as G. 

 CORE Data Set: Summary of Results in Terms of Edit 

Distance and Wallclock Time of all algorithms edge in the 

network with probability less than 0.27. Also, about 20 percent 

of the edges have probability greater than 0.98. The edge 

probabilities are uniformly spread in the remaining range 

1⁄20:27; 0:98Š . The data set exhibits power- law degree 

distribution, short paths, and high clustering coefficient. 

XI. QUANTITATIVE PERFORMANCE of ALGORITHMS 

     The goal of this experiment is to compare the performance 

of our algorithms (pKwikCluster, Agglomerative, and Furthest) 

with respect to the quality of the solutions they produce as well 

as their running times. The quality of a solution is measured in 

terms of our objective function, i.e., the expected edit distance 

of the output cluster graphs from the input probabilistic graph. 

Apart from our algorithms, we also report results for three 

other methods: pCast, Balls, and MCL. The past algorithm is a 

straightforward adaptation of the Cast heuristic [14] for 

probabilistic graphs. The Balls algorithm is a variant of 

pKwikCluster, proposed by Gionis et al [13] for solving the 

clustering-aggregation problem. Finally, the MCL procedure is 

a two-parameter heuristic clustering technique based on random 

walks and matrix multiplications. Krogan et al. [14] report that 

they have manually tuned the two parameters of MCL to 

optimize the utility of the algorithm’s results. We use this 

optimized output provided by Krogan et al, which is available 

in the online supplemental material. We refer to this cluster- ing 

as Reference. 

We implemented pKwikCluster and pCast. For 

Agglomerative, Furthest, Balls we used the code provided by 

Gionis et al. [13], which is available online.2 Both pCast and 

Balls require the setting of one parameter. For pCast, we set the 

value of the parameter to 0.7 after experimentally observing 

that it minimizes the expected edit distance. We set the 

parameter of Balls to its default value 0.17. 

     The running time of these algorithms for our 

implementations are also reported. Since pKwikCluster is a 

randomized algorithm, we ran it for 100 times and we report 

the best value of our objective achieved over these runs. In 

terms of edit distance, pKwikCluster and Agglomerative out- 

perform the rest of the algorithms yielding solutions with edit 

distance 4,194 and 3,420 respectively. In this small data set, 

pKwikCluster takes just 5ms for a single run. Even though 

Agglomerative produces the highest quality clustering in 

CORE, its running time is 10 s. For the Reference clustering we 
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do not report the running time since we utilize the reported 

results of MCL directly [3], without running the algorithm 

ourselves. However, MCL involves matrix multiplications so 

its complexity is at least quadratic to the number of nodes.  

XII.QUALITATIVE PERFORMANCE of ALGORITHMS 

     In this experiment, we validate the output of our methods 

with respect to a known ground truth. Our results indicate that 

our techniques not only produce meaningful clustering but also 

discover the correct number of clusters. 

     We use the MIPS database of protein complexes as ground 

truth [15]. MIPS complexes define co-complex relationships 

among proteins; a co-complex relationship is a pair of proteins 

that both belong to the same complex. Among the co-complex 

relationships present in MIPS, we only keep the ones that occur 

in G.Thus, we end up with a ground truth of 5,380 pairs of 

proteins. We emphasize that the complexes from MIPS 

correspond to overlapping sets of proteins; i.e., proteins may 

belong to more than one complex. On the other hand, the output 

clustering of the methods reported here are partitions, i.e., every 

protein participates in exactly one cluster. 

The confusion matrix constructed using the output of each 

algorithm. In particular, the third, fourth, and fifth columns 

report, respectively, the number of True Positives (TP), False 

Positives (FP), and False Negatives (FN) attained by the 

different algorithms. All these calculations are done 

considering the MIPS database as the ground truth. The results 

indicate that our methods settle for a different trade off than 

Reference. For instance, the numbers of TPs are 838 for 

pKwikCluster, while Reference discovers twice as many. On 

the other hand, the FPs of pKwikCluster is six times less than 

the ones of Reference. 

To sum up, our techniques produce different clustering 

compared to Reference. Yet, in terms of quality the results are 

comparable even though each clustering achieves 

 

XIII.PERFORMANCE of  pKwikCluster 

Both previous experiments indicate that pKwikCluster, 

which is a provably approximation algorithm, performs very 

well in practice. The quality of the solutions it produces in 

terms of both their edit distance and their structural 

characteristics compare favourably to the other algorithms. 

Further, pKwikCluster scales well and is thus appropriate for 

large data sets. Therefore, we focus on pKwikCluster for the 

remainder of this paper. The goal of this experiment is to 

illustrate that in practice, the probability of sampling a random 

world with edit distance significantly larger than the expected 

edit distance optimized by pKwikCluster is negligible. 

 

XIV.SCALABILITY EXPERIMENT on POWER-LAW 

GRAPHS 

Since most of the real-world graphs are scale-free, we test the 

scalability of our algorithm (pKwikCluster) using synthetically 

generated scale-free graphs. 

We generate synthetic graphs using the Baraga  si-Albert 

(BA) model [11]. The BA graph-generation process adds nodes 

to the graph one at a time. Each new node is connected to k 

existing nodes with a probability that is proportional to the 

number of links that the existing nodes already have. We make 

these graphs probabilistic by generating a probability value 

uniformly at random in [0, 1] for each edge. We call these 

graphs Probabilistic BA graphs. 

The execution time of pKwikCluster in seconds as a 

function of the number of edges of the generated graph. For 

each data point shown in Fig. 3, we create 20 probabilistic 

graphs and we run pKwikCluster 20 times on each graph. Thus,  

each point is the average of 400 executions. The execution time 

of pKwikCluster in seconds is shown on the y-axis. All graphs 

have 50,000 nodes and the x-axis is the total number of edges 

in the graph. We vary the number of edges by choosing 

parameter k from f1; 2; ...; 10g. It confirms that the running 

time of pKwikCluster scales linearly to the number of edges. 

XV.CONCLUSION 

     In this paper, we presented a thorough study of clustering 

probabilistic graphs using the edit distance metric. We focused 

on the problem of finding the cluster graph that minimizes the 

expected edit distance from the input probabilistic graph. Our 

formulation adheres to the possible-worlds semantics. Also, our 

objective function does not require the number of clusters as 

input; the optimal number of clusters is determined 

algorithmically. 

     We showed that our problem can be efficiently 

approximated, by establishing a connection with correlation 

clustering. In addition, we proposed various intuitive. 
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