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Abstract – In this paper the point operation of Edwards 

Curves, Twisted Edwards Curve and Binary Edwards 

Curves are discussed. The computational efficiency are 

also calculated in terms of point addition, doubling and 

scalar multiplication. 
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I. EDWARDS CURVES 

 Edwards introduced a new model of elliptic 

curves over F with char(F)  2 which is defined by 

(Edwards 2007) 

 Ec : x
2
 + y

2
 = c

2
(1 + x

2
y

2
)   (1) 

where c  F. Here obtained an efficient explicit 

formula for point addition of these curves as follows: 

Let P = (x1, y1) and Q = (x2, y2) be two points on Ec. 

Then P + Q = R = (x3, y3), where 

    
         

 (          )
 

    
         

 (          )
 

 Edwards showed that all elliptic curves over non-

binary finite field F can be transformed to Edwards’s 

curves if F is algebraically closed. However, over the 

finite field F, only a small number of elliptic curves 

can be expressed in this form. Bernstein and Lange 

improved the notion of Edwards form defined by 

(Bernstein 2007) 

 Ed : x
2
 + y

2
 = 1 + dx

2
y

2
   (2) 

where d  F –  {0, 1}. They showed that more than ¼ 

of all isomorphism classes of elliptic curves over the 

finite field F could be transformed to Edwards curve 

over the same field. The curve Ed has an additive 

group structure together with the identity (neutral) 

element O = (0, 1). The point O
|
 = (0, −1) has order 

2. The points (1, 0) and (−1, 0) have order 4. 

 The geometric interpretation of the addition law 

for Edwards curves is given by the following way 

(Arenea 2011): (Fig. 1, 2 and 3) We first observe that 

1 = (1 : 0 : 0) and 2 = (0 : 1 : 0) are the points at 

infinity that have multiplicity 2. There is a conic C 

determined by passing through the 5 points P, Q, O
|
 , 

1 and 2 has only one more intersection point −R 

with the curve E. Let h1 be the function 

corresponding to C with div(h1) = (P) + (Q) + (O
|
) + 

(−R) – 2 (1) − 2(2). In order to replace O
|
 by O 

and −R by R, one can use another function h2 that is 

the product h2 = l1l2 of two lines. A horizontal line l1 

passing through the point R is with div(l1) = (R) + 

(−R) − 2(2), and a vertical line l2 passing through 

the point O is with div(l2) = (O) + (O
|
) − 2(1). 

Therefore, the equation R = P + Q corresponds to 

div(h1/l1l2) = (P) + (Q) − (R) − (O). Using this 

observation, Bernstein and Lange write down the 

explicit formula for point addition and point doubling 

of the curve Ed as follows (Bernstein 2007): Let P = 

(x1, y1) and Q = (x2, y2) be two points on Ed. Then P 

+ Q = R = (x3, y3), where 

    
         

(           )
 

 

    
         

(           )
 

 

 

Fig.1 Addition and Doubling over R in Edwards Curves for d < 0 

 

Fig. 2 Addition and Doubling over R in Edwards Curves for d > 0 

 These formulae are strongly unified. If d is a 

non-square in F, the addition law is complete, i.e., it 

works for all pairs of inputs. The inverse of the point 

(x1, y1) on Ed is (−x1, y1). In order to avoid the 
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inversion in addition formulae, the notion of Edwards 

curves in projective coordinates (Bernstein 2007) is 

defined by 

 (X
2
 + Y

2
)Z

2
 = (Z

4
 + dX

2
Y

2
)   (3) 

 

Fig. 3 Addition and Doubling over R in Edwards Curves  

for 0<d<1 

 The point addition for equation (3) is obtained by 

the following formulae: Let P = (X1 : Y1 : Z1) and Q 

= (X2 : Y2 : Z2) be two points on equation 5.5, then P 

+ Q = R = (X3 : Y3 : Z3), where 

X3 = Z1Z2(Z1
2
Z2

2
 − dX1X2Y1Y2)[(X1 + Y1)(X2 + 

Y2)−X1X2 − Y1Y2] 

Y3 = Z1Z2(Z1
2
Z2

2
 + dX1X2Y1Y2)(Y1Y2 − X1X2) 

Z3 = (Z1
2
Z2

2
 − dX1X2Y1Y2)(Z12Z22 + dX1X2Y1Y2) 

 These formulae are also unified. The point (0 : 1 

: 1) is the identity element of addition law. The 

inverse of (X1 : Y1 : Z1) is  

(−X1 : Y1 : Z1). 

 The computational cost for addition, doubling, 

and unified addition is 10M + 1S + 1D + 7a, 3M + 

4S + 6a, and 10M + 1S + 1D + 7a, respectively 

(where M represents point addition, D represents 

point doubling, S represents scalar multiplication and 

a represents multiplication with other constants). The 

mixed addition formulae can also be obtained by 

replacing Z2 = 1 in the above formulae that reduces 

the total costs to 9M + 1S + 1D + 7a. The presence 

of point of order 4 in the group of elliptic curves in 

equation 3, reduces the number of elliptic curves in 

Edwards model over F. 

II. TWISTED EDWARDS CURVES 

 Let F be a field with char(F)  2. Then twisted 

Edwards curve is defined by 

        
              (4) 

where a, d  F – {0}. The twisted Edwards curve Ea,d 
is a quadratic twist of the Edwards curve E1,d/a. If a is 

square in F, then Ea,d is isomorphic to E1,d/a over F. 

The set of these curves is invariant under quadratic 

twists, in other words, every quadratic twist of a 

twisted Edwards curve is isomorphic to a twisted 

Edwards curve. The point addition for equation 5.6 is 

obtained by the following formulae: Let P = (x1, y1) 

and Q = (x2, y2) be two points on Ea,d. Then P + Q = 

R = (x3, y3), where 

    
         

(           )
 

    
          

(           )
 

 These formulae are unified. The point (0, 1) is 

the identity element of addition law and the inverse 

of the point (x1, y1) on Ea,d(F) is (−x1, y1). If a is 

square in F and d is non-square in F, then the 

addition law for Twisted Edwards curve is complete. 

In order to avoid inversion in addition formulae given 

above, twisted Edwards curves in projective 

coordinates is defined by 

 (aX
2
 + Y

2
)Z

2
 = Z

4
 + dX

2
Y

2
   (5) 

 For Z1  0, the homogeneous point (X1 : Y1 : Z1) 

represents the affine point (X1/Z1, Y1/Z1) on Ea,d. We 

obtained the following explicit formulae for addition 

and doubling on twisted Edwards curves in projective 

coordinates as follows (Bernstein 2008): Let P = (X1 

: Y1 : Z1) and Q = (X2 : Y2 : Z2) be two points on 

equation (5), then P + Q = R = (X3 : Y3 : Z3), where 

 X3 = (X1Y2 − Y1X2)(X1Y1Z2
2
 + X2Y2Z1

2
) 

 Y3 = (Y1Y2 + aX1X2)(X1Y1Z2
2
 − X2Y2Z1

2
) 

 Z3 = Z1Z2(X1Y2 − Y1X2)(Y1Y2 + aX1X2) 

and  2P = R = (X3 : Y3 : Z3), where 

 X3 = (aX1
2
 + Y1

2
 − 2Z1

2
)[(X1 + Y1)

2
 – X1

2
 – Y1

2
] 

 Y3 = (aX1
2
 + Y1

2
)(aX1

2
 – Y1

2
) 

 Z3 = (aX1
2
 + Y1

2
)(aX1

2
 + Y1

2
 − 2Z1

2
) 

 The computational cost of point addition and 

point doubling are 11M + 2D + 9a and 3M + 4S + 

1D + 7a, respectively. It turns out that a mixed 

addition requires 9M + 2D + 9a by setting Z2 = 1. 

 The unified addition formulae for twisted 

Edwards curves in projective coordinates are also 

obtained as follows: Let P = (X1 : Y1 : Z1) and Q = 

(X2 : Y2 : Z2) be two points on equation 5.7, then P + 

Q = R = (X3 : Y3 : Z3), where 

X3 = Z1Z2(Z1
2
Z2

2
 − dX1X2Y1Y2)[(X1 + Y1)(X2 + Y2) − 

X1X2 − Y1Y2] 

Y3 = Z1Z2(Z1
2
Z2

2
 + dX1X2Y1Y2)(Y1Y2 − aX1X2) 

Z3 = (Z1
2
Z2

2
 + dX1X2Y1Y2)(Z1

2
Z2

2
 − dX1X2Y1Y2) 

The computational cost of unified addition is 10M + 

1S + 2D + 7a. 

 Another way to avoid inversions is to define 

inverted coordinates as follows: 

 (X
2
 + aY

2
)Z

2
 = X

2
Y

2
 + dZ

4
   (6) 

where XYZ  0. The homogeneous point (X1 : Y1 : Z1) 

with X1Y1Z1  0 represents the affine point (Z1/X1, 

Z1/Y1) on Ea,d. In (Bernstein 2007), Bernstein and 

Lange introduced these inverted coordinates for the 

case a = 1, and observed that the coordinates save 

time in addition. Bernstein et al. generalized to 

arbitrary a in (Bernstein 2008). They also obtained 

the following explicit formulae for unified addition 

and doubling on twisted Edwards curves in inverted 

coordinates as follows: Let P = (X1 : Y1 : Z1) and Q = 

(X2 : Y2 : Z2) be two points on equation 5.8, then P + 

Q = R = (X3 : Y3 : Z3), where  
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 X3 = Z1Z2(X1X2 + aY1Y2)(X1Y1Z2
2
 – Z12X2Y2) 

 Y3 = Z1Z2(X1Y2 − Y1X2)(X1Y1Z2
2
 + Z1

2
X2Y2) 

 Z3 = (X1Y1Z2
2
 – Z1

2
X2Y2)(X1Y1Z2

2
 – Z1

2
X2Y2) 

and  2P = R = (X3 : Y3 : Z3), where 

 X3 = (X1
2
 + aY1

2
)(X1

2
 – aY1

2
) 

 Y3 = [(X1 + Y1)
2
 – X1

2
 – Y1

2
](X1

2
 + aY1

2
 − 2dZ1

2
) 

 Z3 = (X1
2 
– aY1

2
)[(X1 + Y1)

2
 – X1

2
 – Y1

2
] 

 The unified addition formulae for twisted 

Edwards curves in inverted coordinates are also 

obtained as follows: Let P = (X1 : Y1 : Z1) and Q = 

(X2 : Y2 : Z2) be two points on equation 5.7, then P + 

Q = R = (X3 : Y3 : Z3), where 

 X3 = (X1X2Y1Y2 + dZ1
2
Z2

2
)(X1X2 − aY1Y2) 

 Y3 = (X1X2Y1Y2 – dZ1
2
Z22)[(X1 + Y1)(X2 + Y2) − 

X1X2 − Y1Y2] 

 Z3 = Z1Z2(X1X2 − aY1Y2)[(X1 + Y1)(X2 + Y2) − 

X1X2 − Y1Y2] 

 The computational cost of point addition, point 

doubling and unified addition are 11M + 2D + 9a, 

3M + 4S + 2D + 6a, and 9M + 1S + 2D + 7a, 

respectively. The mixed addition formulae can also 

be obtained by replacing Z2 = 1, which gives an 

obvious saving of 2M since Z1 · Z2 = Z1, leading to a 

total cost of 9M+ 2D + 9a. 

 The extended Twisted Edwards coordinates is 

introduced in (Hisil 2008) by defining an auxiliary 

coordinate t = xy to represent a point (x, y) on Ea,d in 

extended affine coordinates (x, y, t). One can pass to 

the projective representation (X : Y : T : Z) which 

satisfies equation 5.7 and corresponds to the extended 

affine point (X/Z, Y/Z, T/Z) with Z  0. The auxiliary 

coordinate T has the property T = XY/Z. Let P = (X1 

: Y1 : T1 : Z1) and Q = (X2 : Y2 : T2 : Z2) be two points 

on equation 5.7 with Z1  0 and Z2  0, then P + Q = 

R = (X3 : Y3 : T3 : Z3), where 

 X3 = (X1Y2 + Y1X2)(Z1Z2 − dT1T2) 

 Y3 = (Y1Y2 − aX1X2)(Z1Z2 + dT1T2) 

 T3 = (Y1Y2 − aX1X2)(X1Y2 + Y1X2) 

 Z3 = (Z1Z2 − dT1T2)(Z1Z2 + dT1T2) 

 These formulae are unified that derived from 

thevaddition formulae on Ea,d. It is deduced from 

(Bernstein 2007) and (Bernstein 2008) that these 

formulae are also complete when d is not a square in 

F and a is a square in F. The identity element is 

represented by (0 : 1 : 0 : 1). The negative of (X1 : Y1 

: T1 : Z1) on equation (5) is (−X1 : Y1 : −T1 : Z1). The 

computational cost of point addition, point doubling 

and unified addition are 9M + 1D + 7a, 4M + 4S + 

1D + 7a, and 9M + 2D + 7a, respectively. The 

mixed addition formulae can also be obtained by 

setting Z2 = 1 in the above formulae, reduces the total 

costs to 8M + 1D + 7a. This means that one can add 

(X1 : Y1 : T1 : Z1) and an extended affine point (x2, y2, 

x2y2), which is equally written as (x2 : y2 : x2y2 : 1). 

 

III. BINARY EDWARDS CURVES 

 Let F be a field with char(F)= 2. Then Binary 

Edwards curve is defined by            (   )  

  ( 
    )       (   )        where d1  

0 and d2  d1
2
 + d1. The point addition is obtained by 

the following formulae: Let P = (x1, y1) and Q = (x2, 

y2) be two points on         . Then P + Q = R = (x3, 

y3), where 

    
  (     )   (     )(     )

   (     
 )(     )

 
(     

 )(  (       )     )

   (     
 )(     )

 

    
  (     )   (     )(     )

   (     
 )(     )

 
(     

 )(  (       )     )

   (     
 )(     )

 

 The addition law on          is strongly unified. 

The point (0, 0) is the identity element of addition 

law and the inverse of the point (x1, y1) on          is 

(y1, x1). The computational cost of addition and 

doubling in projective coordinates are 21M + 1S + 

4D and 2M + 6S + 3D, respectively. When t
2
 + t + d2 

 0 for all t  F, the addition law on the binary 

Edwards curve         ( ) is complete. The mixed 

addition formulae lead to a total cost of 13M + 3S + 

3D that can be obtained by (X3 : Y3 : Z3) = (X1 : Y1 : 

Z1) + (x2, y2), where (X1 : Y1 : Z1) and (x2, y2) on 

        ( ). 

IV. CONCLUSION 

 The computational cost for addition, doubling, 

and unified addition is 10M + 1S + 1D + 7a, 3M + 

4S + 6a, and 10M + 1S + 1D + 7a, respectively for 

Edwards curves. The computational cost of point 

addition, point doubling and unified addition are 9M 

+ 1D + 7a, 4M + 4S + 1D + 7a, and 9M + 2D + 7a, 

respectively. The mixed addition formulae can also 

be obtained by setting Z2 = 1 in the above formulae, 

reduces the total costs to 8M + 1D + 7a for twisted 

Edwards curves and finally the cost of binary 

Edwards curve is: The computational cost of addition 

and doubling in projective coordinates are 21M + 1S 

+ 4D and 2M + 6S + 3D, respectively. And the 

mixed addition formulae lead to a total cost of 13M + 

3S + 3D that can be obtained by (X3 : Y3 : Z3) = (X1 : 

Y1 : Z1) + (x2, y2), where (X1 : Y1 : Z1) and (x2, y2) on 

        ( ). 
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