
 BDD and Pre-computation based strategy for

Power optimization of a 4-bit Comparator

Satish.Ajjappanavar

*1
,Dr.AnilkumarV.Nandi

#2

*Dept of Electronics & communication

BVB College of Engineering and Technology

Hubli,India

#
Professor

,Dept of Electronics &communication

BVB College of Engineering and Technology

Hubli,India

1
satish.ajjappanavar@gmail.com

2
anilnandy@bvb.edu

Abstract : BDD and Precomputation strategies are the general

evaluation methodologies for symbolic model checking, In BDD

based realization of logic circuits, the area and power

consumption is determined by the total number of nodes. A

proper polarity selection of the sub-functions can not only reduce

the number of BDD nodes, but also the switching

activity,Precomputation is the method of “input subset aborting”

technique so that we can optimize the power by reducing the

switching activity in the next clock signal,The Cadence SOC

encounter tool which provides the power levels of the each Design

for low power, This study addresses the performance issue of 4-

bit magnitude comparator specially for low power.

Key words:BDD,Precomptation,Cadence SOC Encounter tool

1.INTRODUCTION
Today, digital design, almost without exception, uses synthesis tools

at the register transfer level, which require a designer to explicitly

incorporate power reducing features within the system design.

Approaches exist to lowering the power. One is to reduce the

operating voltage of the circuit, or to reduce the voltage supply. The

weight and cost of power supply generally depends on the maximum

possible power used at some instant. These are guided by a global

cost function, which evaluates the current configuration with respect

to user-specified objectives on area, delay, and now power

consumption. The current trend towards low-power design is mainly

driven by two forces the growing demand for long-life autonomous

portable equipment, and the technological limitations of high-

performance VLSI systems.For the first category of products, low-

power is the major goal for which speed and dynamic range might

have to be sacrificed. High speed and high integration density are the

objectives for the second application category. The most efficient way

to reduce the power consumption of digital circuits is to reduce the

supply voltage. Power optimization approaches at the High-level are

significant since research results Indicates that higher levels of

abstraction have greater potential for power reduction.

2.BDD INTRODUCTION
Binary Decision Diagrams (BDDs) are useful data structures for

symbolic Boolean manipulations. For the last two decades, BDD have

gained great popularity in representing discrete functions. BDD is

graph representation of Boolean functions proposed by Bryant and

Akers [3]. It is a directed acyclic graph; the graph has two sink nodes

labelled 0 and 1 representing the Boolean functions 0 and 1. Each

sink node is labelled with a Boolean variable and has two out edges

labelled 1 and 0. BDDs are used in many tasks in VLSI, such as

equivalence checking, property checking, logic synthesis, and false

paths. In this paper we describe a new approach for the realization of

a BDD package, to perform manipulations of Boolean functions.

Synthesis, verification, and testing algorithms of VLSI circuits

manipulate large number of switching functions. Therefore it is

important to have efficient methods to represent and manipulate such

functions.

Consider the switching function,

f= AvBC

and assume we are interested in defining a procedure for determining

the binary value of f given the binary values of A, B, and C. One way

to do this would be to begin by looking at the value of A. If A = 1,

then f= 1 and we are finished. If A = 0, we look at B. If B = 1, then f=

0 and again we are finished. Otherwise, we look at C and its value

will be the value of f Fig 2.1 shows a simple diagram of this

procedure.

Figure 2.1: BDD representation of function A+B’C [3]

Binary Decision diagram based minimization of a logic circuit plays a

significant role. A Boolean function can be in factored form in multi

level realization. BDD is a form of realization of multi level logic and

is resulted from direct implementation of Shannon’s Expansion of a

logic function. Each node in a BDD signifies some logic function and

a decision is made at each node of it and determines either the node is

getting a zero value or one at each leg. This continues until the tree

diagram reaches its leaf, Each BDD node can be easily realized using

multiplexer.Thus, minimization of total number of nodes of a BDD

means minimizing the number of variable present in th

Aspiring Me
Typewritten text
388

Aspiring Me
Typewritten text
© 2013 IJAIR. ALL RIGHTS RESERVED

Aspiring Me
Typewritten text
Satish et al./ IJAIR 			 Vol. 2 Issue 6 			 ISSN: 2278-7844

function, hence reduction in area [3]. A proper polarity selection of

the sub-functions can reduce not only the number of BDD nodes, but

also the switching Consider the diagram in Fig. 2.2(a) which results

from the truth table for f= ABC v AC. We note that the value of f

obtained at the leftmost C-node is 0 regardless of the value of C.

Accordingly; we can remove this node and replace it by 0. Likewise,

the two rightmost C-nodes are identical in the sense that they lead to

identical output values, so we can combine them into a single node.

The result is Fig. 2.2(b).

 But now we note that the rightmost B-node is superfluous,

since both of its branches go to the same node. Thus, we can remove

it to obtain the simplified diagram of Fig. 2.2(c).

Figure 2.2: Optimization of BDD of function f [3]

3. BDD PACKAGE [2]
BDD packages typically share common implementation features.
There are three main components in a BDD package: the BDD

algorithm component, the dynamic variable reordering component,

and the garbage collection component. In this section, we describe the
common features in each of these components.

3.1 BDD Algorithm
This component computes the result BDDs for various Boolean

operations. The implementation of these algorithms is typically based

on depth-first traversal. The unique tables are hash tables with the

hash collisions resolved by chaining. A separate unique table is

associated with each variable to facilitate the dynamic-variable-

reordering process. The computed cache is a hash-based direct

mapped (1-way associative) cache.

 BDD nodes support complement edges where for each edge,

an extra bit is used to indicate whether or not the target function

should be complemented (Boolean negation). The advantage of this

encoding is that a function and its complement can be represented by

the same BDD and use this extra bit in the reference edge to interpret

the BDD either in the positive or the negated form. Implementation-

wise, this extra bit is typically encoded in the least significant bit of

the address pointer (the reference edge) to avoid incurring extra

memory cost. This encoding exploits the property that address

pointers in modern machines are always at least 4-byte aligned, which

means the least significant bit is always 0. Thus it can be used to

encode the complement information.

3.2 Dynamic Variable Reordering
As the variable order can have significant impact on the size of a

BDD graph, dynamic variable reordering is an essential part of all

modern BDD packages. The goal for this component is to

dynamically establish a good variable order as the computation

progresses. Typically, when a variable reordering algorithm is

invoked, all top-level operations that are currently being processed

are aborted. When the variable reordering algorithm terminates, these

aborted operations are restarted from the beginning. The dynamic

variable reordering algorithms are generally based on the sifting

algorithm; i.e., the variable orders are changed by exchanging nodes

in one level with nodes in the adjacent level. Figure 3.2.1 illustrates

the sifting process for the 2-bit comparator example.

Figure 3.2.1: Shifting process for 2-bit comparator [2]

3.3 Garbage Collection
BDD computations are inherently memory intensive because after all,

it is all about traversing and constructing graphs. Furthermore, in

verification, many intermediate BDD results are created to arrive at a

simple final answer—true or false. Thus, it is important to have a

good garbage collector to automatically remove BDD nodes that are

no longer useful. We will refer to a BDD node as reachable if it is in

some BDD that external user has a reference to. As external users free

references to BDDs, some BDD nodes may no longer be reachable

(deaths). We will refer to these nodes as unreachable BDD nodes.

Aspiring Me
Typewritten text
389

Aspiring Me
Typewritten text
© 2013 IJAIR. ALL RIGHTS RESERVED

Aspiring Me
Typewritten text
Satish et al./ IJAIR 			 Vol. 2 Issue 6 		 ISSN: 2278-7844

4.MAGNITUDE COMPARATOR

Comparing two binary numbers for equality is a commonly used

operation in computer system and device interfaces. A circuit that

compares two binary numbers and indicates whether they are equal is

called a comparator. Comparators interpret their input numbers as

signed or unsigned numbers and also indicate an arithmetic

relationship between the numbers often called magnitude comparator.
The logic diagram of 4-bit magnitude comparator is shown in fig

4.1 [11]. It provides greater-than output A > B and less-than output A

< B as well as an equal output A = B. In normal operation exactly one

input and one output should be asserted.The logic for a 4-bit

magnitude comparator is as follows:

Let the two 4-bit numbers be A= A3A2A1A0 and B = B3
B2 B1 B0.

1. If A3 = 1 and B3 = 0, then A > B. Or
2. If A3 and B3 coincide, and if A2 = 1 and B2 = 0, then A > B.

Or
3. If A3 and B3 coincide, and if A2 and B2 coincide, and if A1 =

1 and B1 = 0, then A > B.

If A3 and B3 coincide, and if A2 and B2 coincide, if A1 and

B1 coincide, and if A0 = 1 and B0 = 0, then A > B.

values of the circuit one clock cycle before they are required, and

using the precomputed values to reduce internal switching activity in

the succeeding clock cycle. The primary optimization step is the

synthesis of precomputation logic, which computes the output values

for a subset of a input conditions. If the output values can be

precomputed, the original logic circuit can be ―turned off’ in the next

clock cycle and will not have any switching activity. Since the

savings in the power dissipation of the original circuit is offset by the

power dissipated in the precomputation phase, the selection of the

subset of input conditions for which the output is precomputed is

critical. The precomputation logic adds to the circuit area and can also

result in an increased clock period.

Figure5:4-bit comparator with second pre-computation

architecture

F1

Figure 4.1: Logic diagram of 4-bit comparator [11]

5.PRE-COMPUTATION

We present a powerful sequential logic optimization method that is

based on selectively precomputing the output logic

6.ANALYSIS AND RESULT

When we started, implementation of 4-bit magnitude comparator in

BDD, then the total product terms was 78 that means 78 node count ,

but with the help of BDD package tool it reduced to 46 node count.

Now one node is represented by a 2x1 multiplexer. After

synthesizing 2x1 multiplexer in Cadence tool, the power required for

it is 29.11 nw. Since we have total 46 nodes so total power taken by

4-bit comparator is 46*29.11 nw which is equal to 1334 nw.When we

synthesized 4-bit magnitude comparator in Cadence tool then the

power comes as 2261.589 nw.After applying pre-computation

technique in comparator then the total power comes as 1885.468 nw

which is less then compare to without applying pre-computation

technique in comparator. But when we compare all the three ways

then we can conclude that, implementation of 4-bit magnitude

comparator through BDD is the best way for low power aspect.

Aspiring Me
Typewritten text
390

Aspiring Me
Typewritten text
© 2013 IJAIR. ALL RIGHTS RESERVED

Aspiring Me
Typewritten text
Satish et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

COMPARISON

 Cadence
Pre-
computation BDD

Power
2261.589

nw 1885.468 nw 46*29.11 nw

 =1334nw

7.CONCLUSION
Symbolic model checking has proven to be a powerful paradigm to

automatically verify real world applications. In this thesis a BDD

based optimization considering the output phase has been presented

and found to achieve our objective of power minimization. The result

found to be comparable to other schemes of optimization, such as pre-

computation technique.In this paper I have calculated a BDD based

simulation of a 4-bit magnitude comparator and compare with pre-

computation strategy and find that the significant improvement in

term of power.

REFERENCES

[1] S.Chaudhury and S.Chattopadhyay ―Output phase assignment for

area and power optimization in multi-level multi-output

combinational logic circuits‖.
[2] B. Yang. ―Optimizing Model Checking based on BDD

Characterization.‖ School of Computer Science –Carnegie

Mellon University, May 1999. Available as researchreport CMU-

CS-99-129.

[3] S. B. Akers, "Binary Decision Diagram," IEEE Trans.

Computers, Vol. 27, 1978.
[4] K. S. Brace and R. L. Rudell and R. E. Bryant, ―Efficient

Implementation of a BDD Package,‖ Design Automation

Conference, 1990.
[5] P.W.C. Prasad, and A. K. Singh, "An Efficient Method for

Minimization of Binary Decision Diagrams," 3rd International
Conference on Advances in Strategic Technologies (ICAST), pp.

683-688, 2003.
[6] MazharAlidina, Jose Monteiro, SrinivasDevadas, ―Pre-

computation based sequential logic optimization for low power‖,

IEEE transaction on VLSI system, No.4 , DECEMBER 1994.

[7] ONDREJ LHOTAK and LAURIE HENDREN, ― Evaluating the
Benefits of Context-Sensitive Points-to Analysis Using a BDD-
Based Implementation‖ Sep 2008, ACM, Proceedings of the 15th
International Conference on Compiler Construction. (page 19)

[8] Robert Wille and Rolf Drechsler, ―BDD based synthesis of
reversible logic for large function‖, Design automation
conference,2009, DAC’09.46th ACM/IEEE.

[9] M.Morris Mano ―digital logic and computer design‖ PRENTICE-

HALL, INC., ENGLEWOOD CLIFFS, 2009
[10] Nagayama, S., A. Mishchenko, T. Sasao and J.T. Butler, 2003.

―Minimization of average path length in BDDs by variable
reordering‖.Intl. Workshop on Logic and Synthesis

[11] A. Anand Kumar ―Fundamentals of Digital Design circuits‖, 2nd
edition, PHI Learning private limited-2009

Satish Ajjappanavar received the B.E. degree

in Electronics & Communication Engineering

from GM institute of technology, Davanagere.

At present persuing the Master of Technology

in VLSI Design & Testing in BVB College of

Engg & Technology,Hubli,Karnataka,India.

 Dr.Anilkumar V.Nandi Working as Professor

in Dept of Electronics & Communication and

controller of Examination Dept in BVB

College of Engg & Technology,Hubli,India

Aspiring Me
Typewritten text
391

Aspiring Me
Typewritten text
© 2013 IJAIR. ALL RIGHTS RESERVED

Aspiring Me
Typewritten text
Satish et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

