
Gaurav Saini et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

 © 2013 IJAIR. ALL RIGHTS RESERVED 259

Software Testing Approach for efficient Bug finding with Yin-Yang

Testing Theory

Gaurav Saini
#1

, Kestina Rai
*2

#
 Department of Computer Science, Chandigarh Engineering College

1
 gaurav062007@gmail.com

*
 Assistant Professor ,Department of Computer Science, Chandigarh Engineering College

2
 kestina_rai@yahoo.co.in

Abstract— Model Selection for Software testing is

very important prospective in various product

accuracy. Through research on software testing

model selection, seeking the most appropriate

testing method to achieve most reasonable testing

volume and optimal testing result. In our Research

we will focus on improving this model description

by adding more user end experience in acceptance

testing. Various testing will be fetched on industrial

experience. Various experiences from industrial

companies will be fetched and will be implemented

according to the proposed optimized Yin-Yan

Theory for software testing. We will also try to

introduce more testing dependencies. In User

testing, we will add offline and online dependencies

test which will be helpful in finding issues in

overall acceptance testing phase. Software testing

will be done by various tools and will link to

proposed theory. Test model selection and test

volume evaluation method will be applied to the

software testing work of Industrial applications and

will compared with traditional method.

Keywords— Yin-Yang Theory, Regression Testing, Software

Testing.

INTRODUCTION

Software testing is a set of activities conducted with

the intent of finding errors in software. It also

verifies and validate whether the program is

working correctly with no bugs or not. [3] It

analyzes the software for finding bugs. Software

testing is not just used for finding and fixing of

bugs but it also ensures that the system is working

according to the specifications. [4] Software testing

is a series of process which is designed to make

sure that the computer code does what it was

designed to do. Software testing is a destructive

process of trying to find the errors. The main

purpose of testing can be quality assurance,

reliability estimation, validation or verification. The

other objectives or software testing includes.

[3][4][5]

 The better it works the more efficiently it

can be tested.

 Better the software can be controlled more

the testing can be automated and optimized.

 The fewer the changes, the fewer the

disruption to testing.

 A successful test is the one that uncovers an

undiscovered error.

 Testing is a process to identify the

correctness and completeness of the

software.

 The general objective of software testing is

to affirm the quality of software system by

systematically exercising the software in

carefully controlled circumstances.

There is big need of Software testing as described,

while making food, it’s ok to have something extra,

people might understand and eat the things we

made and may well appreciate our work. But this

isn't the case with software project development.

[7][8] If we fail to deliver a reliable, good and

problem free software solution, we fail in our

project and probably we may lose our client. So in

order to make it sure, that we provide our client a

proper software solution, we go for testing. We

check out if there is any problem, any error in the

system, which can make software unusable by the

Gaurav Saini et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

 © 2013 IJAIR. ALL RIGHTS RESERVED 260

client. [7] We make software testers test the system

and help in finding out the bugs in the system to fix

them on time.

Software testing is a process which is used to

measure the quality of software developed. It is also

a process of uncovering errors in a program and

makes it a feasible task. It is useful process of

executing program with the intent of finding bugs.

The diagram below represents some of the most

prevalent techniques of software testing which are

classified by purpose. [6]

In order to ensure the software quality, conducting

software testing in every phase of the software

developing process. A complete software testing

should cover the entire life cycle of one software

product. [1]

According to definition of Yin-yang theory, test

methods that with still, obscure and organic

characteristics are called yin testing, for example,

static testing, black box testing and performance

testing; those which are dynamic, obvious and

functional test methods are Yang testing, for

example, dynamic testing, white box testing and

function testing. The Yin-yang classification is as

shown in table 1.

According to Yin yang theory, testing is a mixed a

approach and while testing of software various

processes got mixed or effect heavily the other

testing processes.

Fig. 2 Software Developing and Software Testing Phase

Correspondence Comparison [1]

In any software testing process, the test cases are

either with Yin test or Yang test properties; this is

the inherence theory of Yin-Yang software testing.

 Table 1 Yin- Yan Theory for Software testing

In developing phase, software engineers often

perform code review, this is static testing(Yin

testing) and also white box testing(Yang testing), it

contains both properties of Yin and Yang testing;

During the phase of unit test and integration test,

test engineers usually perform white box testing,

which read through parameters and structural to

check validity (Yang testing), at the same time, they

also need to conduct black box testing to verify the

proper functionality of the modules (Yin testing), it

contains both properties of Yin and Yang testing;

when carrying out system testing and acceptance

testing, engineers not only test function (Yang

testing), but also test performance(Yin testing), it

contains both properties of Yin and Yang testing.

Gaurav Saini et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

 © 2013 IJAIR. ALL RIGHTS RESERVED 261

The inherence theory of Yin-Yang software testing

explains that in the software testing process

contains both Yin and Yang properties, that is to

say, must conduct Yin test and Yang test, satisfying

the inherence of testing. [1]

In our research we are enhancing the similar theory

approach to find software testing

behaviour with different tests.

.

PROPOSED WORK

In this Research we will focus on improving this

model description by adding more user end

experience in acceptance testing. Various testing

will be fetched on industrial experience. Various

experiences from industrial companies will be

fetched and will be implemented according to the

proposed optimized Yin-Yan Theory for software

testing by introducing more testing dependencies.

In User testing, the research will add offline and

online dependencies test which will be helpful in

finding issues in overall acceptance testing phase.

Software testing will be done by various tools and

will link to proposed theory. Test model selection

and test volume evaluation method will be applied

to the software testing work of Industrial

applications and will compared with traditional

method.

 METHODOLOGY

In this paper, refined approach with Yin- Yan

theory will be shaped with adding dependencies of

online and offline test experiences in user testing

phase to improve acceptance testing will be come

into act. the research will find the bugs in software

by implementation of various tests described in

Yin- Yan Theory and distribution table will be

created to fetch accurate results in testing phase.

Software testing packages will be fetched form

industrial experiences. Preferably our testing will be

based on small scale industry so that we can have

local resources for any experimentation. For

fetching various testing experiences, we will

approach some known companies based on testing

business in Small scale industry. Validation will be

based on the number of bugs found and workload

compared to traditional testing.

 EXPERIMENTAL RESULTS

Our initial work starts with selecting small scale

companies for fetching various experiences and

projects from industry based on software testing.

We fetched some good projects from industry and

we will use fetched software codes for further

testing according to our proposed work.

Initial fetched project is known as secure

communication which contains secure

communication of clients with server in an

encrypted manner. This project code is written in

java.

This project contains basic structure with following

conditions:

1) A Secure communication is the requirement

which can be useful in providing better

communication then already existing

algorithms.

2) Complexity should be less.

3) Should be fast enough to process 100 clients.

Second project fetched is the based on testing

Aspect oriented coding in cyvis tool. Again it is

based on java.

This project contains basic structure with following

conditions:

1) Development of the Aspect software is

required with Aspect J as base Language.

Minor alterations and suggestions by

developers are acceptable.

2) Development of similar software is required

in Object Oriented with Java Language as

base.

3) Vision is to refine previous version that is in

Java. Complexity is the concern and should

be less with aspect changes.

4) Should support at least 10 client machines

with core 2 duo processors installed.

5) Management will provide timely guidelines

through official mail.

Gaurav Saini et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

 © 2013 IJAIR. ALL RIGHTS RESERVED 262

6) No other language is acceptable as company

core platform software based on java.

7) Reflection of class difference reports will be

required with analysis under cyvis tool.

8) Any suggestion from developers regarding

testing is open.

In our further step we will implement various

testing techniques to test these projects

4. CONCLUSION

In our continuous research we are working on

software testing the fetched projects according to

Yin-Yang theory and will follow the test require

and need to be implemented. Regression testing

will be prime focus and will try to reduce as many

faults possible and as many bugs we can detect.

References

[1] Fangchun Jiang, Yunfan Lu, “Software testing

model selection research based on Yin-Yang testing

theory”, International Conference on Computer

Science and Information Processing (CSIP), IEEE,

Vol.9, 2012.

[2] Mohd. Ehmer Khan,” Different Forms of

Software Testing Techniques for Finding Errors”,

IJCSI International Journal of Computer Science

Issues, Vol. 7, Issue 3, No 1, May 2010.

[3] Introduction to software testing available at

http://www.onestoptetsing.com/introduction/

[4] Software testing techniques available at

http://pesona.mmu.edu.my/~wruslan/SE3/Readings/

GB1/pdf/ch14-GB1

[5] Paper by Lu Luo available at

http://www.cs.cmu.edu/~luluo/Courses/17939Repor

t.pdf

[6] Software testing by Jiantao Pan available at

http://www.ece.cmu.edu/~roopman/des-

899/sw_testing/

[7] Sahil Batra, Dr. Rahul Rishi, “Improving

Quality Using Testing Strategies”, Journal of

Global Research in Computer Science, Volume 2,

No. 6, June 2011.

[8] Cem Karner, “Testing Computer Software”,

1993.

[9] Sheetal Thakare, Savita Chavan, Prof. P. M.

Chawan, “Software Testing Strategies and

Techniques”, International Journal of Emerging

Technology and Advanced Engineering, pp. 567-

569, Vol. 2, Issue. 4, April 2012.

[10] Abhijit A. Sawant, Pranit H. Bari and P. M.

Chawan, “Software Testing Techniques and

Strategies”, International Journal of Engineering

Research and Applications (IJERA), pp. 980-986,

Vol. 2, Issue 3, May-Jun 2012.

