
Sachin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 280

“Service-Oriented Architecture for Smart Vision Application Based
Cloud Environment”

Abstract: Clouds have emerged as a
computing infrastructure that enables rapid
delivery of computing resources as a utility
in a dynamically scalable, virtualized manner.
Cloud computing offers its service to the end
users on a rental basis which reduces the
computing cost of an enterprise or business.
Cloud computing is new paradigm for
provision of a computing infrastructure and
services the over network using a pool of
abstracted, virtualized, and scalable,
computing resources. One of the challenges
is the lack of standard in configuration,
management, and programming. Our project
aims at creating service oriented application
with cloud environment so that we can
provide best optimal SOA services which can
be deployed on cloud. Distributed application
programs have multiple parts that are on
different virtual machines. The different
nodes can be on the same or different
systems.

Keywords - Service Oriented Architecture,
Service Oriented Cloud Computing System,
Decentralized Software Service (DSS) and
Service.
1.0 Introduction
In the recent years, as technology advances
and more and more people have their own
personal computers, cloud computing has
become more popular than ever. Products
like Windows 8 using cloud computing and
many companies like Amazon and Google
are making use of cloud computing. The
concept of a uniform architecture for all

cloud providers has risen up. Concepts such
as service oriented cloud computing have
sprung up and have set goals to achieve a
uniform architecture that all cloud providers
can use so that all people can interact with all
cloud providers in a uniform manner. There
are many proposed architectures that put
forward the ideas on how to make a cloud
architecture that will do all this. This paper
will take a look at Service Oriented Cloud
Computing [1]. The proposed system aspires
to improve upon current cloud architectures
and make a unified architecture that all
clouds should use. This architectures use
Service Oriented approach.
Applications lack SOA principles such as
reusability, multi-tenancy, flexibility to
customize, which can have significant impact
on the efficiency of a cloud. We propose a
system which will be service oriented where
services would be used to build an
application.
It enables the user to design applications so
that the software modules or components can
be loosely coupled; meaning they can be
developed independently and make minimal
assumptions about their runtime environment
and other components. This approach
changes how the user can think of programs
from the start of the design process and deals
with concurrency, failure and isolation in a
consistent way.
Description of a system as whole:
In this project we propose a concept to prove
CCR and DSS [2], architecture for a Service
Oriented application. The proposed system

Mr. Sachin Darekar
Computer Department

MGM’s college of engineering
and Technology, Kamothe

Mumbai University
sachindarekar1@gmail.com

Prof. D.R.Ingle
Computer Department

Bharati Vidyapeeth’s College of
Engineering, CBD Belapur

Mumbai University.
dringleus@yahoo.com

Sachin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 281

aspires to improve upon the current
application building approach and suggests a
service oriented approach of creating
applications using Microsoft CCR and DSS
Introduction Decentralized Software Services
(DSS) is a lightweight .NET-based runtime
environment that sits on top of the
Concurrency and Coordination Runtime
(CCR)[3]. Decentralized Software Services
(DSS)[4] provides a lightweight, state-
oriented service model that combines the
notion of representational state transfer
(REST)[5] with a system-level approach for
building high-performance, scalable
applications. In DSS services are exposed as
resources which are accessible both
programmatically and for UI manipulation.
By integrating service isolation, structured
state manipulation, event notification, and
formal service composition, DSS[6]
addresses the need for writing high-
performance, observable, loosely coupled
applications running on a single node or
across the network.
A primary design goal of DSS is to couple
performance with simplicity and robustness.
This makes DSS particularly suited for
creating applications as compositions of
services regardless of whether these services
are running within the same node or across
the network. The result is a flexible yet
simple platform for writing a broad set of
applications. DSS uses Decentralized
Software Services Protocol (DSSP) and
HTTP[7] as the foundation for interacting
with services. DSSP is a lightweight
SOAP[8]-based protocol that provides a
clean, symmetric state transfer application
model with support for state manipulation
and an event model driven by state changes.
The DSS runtime provides a hosting
environment with built-in support for service
composition, publish/subscribe, lifetime-
management, security, monitoring, logging,
and much more both within a single node and
across the network. Services can be written
in Visual Studio, or using Microsoft Visual
Programming Language (VPL)[9]. VPL can
be used to create applications as
compositions of services simply by dragging

and dropping them onto a canvas and wiring
them together based on their data-
dependencies. In addition, DSS Manifest
Editor provides a graphical environment for
wiring-up, configuring, deploying, and
running DSS applications on a single node or
across the network.

1.1 Problem Areas Covered by DSS

In the following we describe three common
problem areas of application design and how
DSS addresses them:

1) Robustness

In any complex system, a failure in a sub-part
of the system has the potential of bringing
down the whole system. The reason is that a
partial failure can lead to a catastrophic
failure if it cannot be properly isolated,
detected, and handled. Loose coupling is a
design pattern that often is invoked as a way
of limiting the impact of partial failures.
However, in order to build loosely coupled
systems, each component must be isolated
from all other components as well as from
the underlying runtime environment. Two
common ways in which systems fail to
isolate components are data isolation and
execution isolation. Lack of data isolation
can cause the internal state of a service to be
corrupt and lack of execution isolation can
cause a component to become unresponsive.
DSS isolates services in both data and
execution. Data isolation is achieved by fully
cloning all messages exchanged between
services (including system services). The
cloning code is generated as part of the
compilation and is much faster than full
serialization.

2) Composability

The requirement of robustness forces
applications to become compositions of
loosely coupled components. This raises the
additional problem of how to identify, locate,
and compose such components into a running
application. Most traditional systems define

Sachin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 282

an application as a single process and not as a
composition of loosely coupled services
working together leaving the task of
composition to the application designer. DSS
provides both protocol and runtime support
for creating, managing, deploying, and
running applications that are composed of
loosely coupled services: A service is created
and wired-up at runtime based on a
description of which other services it needs
to compose with in order to function
properly. This model allows applications at
runtime to configure where each service
instance is running. Further, the relationships
that each service instance has with other
service instances is exposed through DSSP
[10] making it possible to see which other
service instances any particular service
instance is dependent on.

3) Observability
A critical aspect of any application is that it
is possible to know what it is doing, what
state it is in, and how it got to be in that state.
In short, without a way to observe a system it
is impossible to know whether the system is
functioning properly. DSS puts the notion of
observability at the core of its application
model by defining a service as a resource
identified by a URI and with exposed state
that change as a result of internal service
behaviour and through interaction with other
services. However, the notion of
observability goes beyond just monitoring an
application by inspecting the state of its
services. By uniformly exposing all services
in terms of their state, DSS provides simple
and consistent solutions for dealing with
administration, management, security, and
service composition based on state
manipulation. Further, DSS enables every
DSS service to be accessed through a Web
browser enabling rich UI as well as easy
integration with a variety of common tools
and platforms.

1.2 CCR Introduction
Concurrency and Coordination Runtime
(CCR) [11] is a managed code library, a
Dynamically Linked Library (DLL),

accessible from any language targeting
the .NET Common Language Runtime
(CLR).

The CCR addresses the need of service-
oriented applications to manage
asynchronous operations, deal with
concurrency, exploit parallel hardware and
deal with partial failure. It enables the user to
design applications so that the software
modules or components can be loosely
coupled; meaning they can be developed
independently and make minimal
assumptions about their runtime environment
and other components. This approach
changes how the user can think of programs
from the start of the design process and deals
with concurrency, failure and isolation in a
consistent way.

1.3 Problem Areas Covered by CCR
Asynchrony - When communicating
between loosely coupled software
components, like programs running across
the network, or User Interface (UI) code
communicating with the user input and the
file I/O subsystem, asynchronous operations
enable the code to scale better, be more
responsive, and deal with failure across
multiple operations. Asynchronous
programming however, considerably reduces
the readability of user code, since logic is
often split between callbacks and the code
that originates the operation. In addition, it is
an almost impossible task to correctly handle
failure across multiple outstanding operations.
Concurrency - Code that needs to better
utilize multiple execution resources, must be
split into independent logical segments, that
can run in parallel, and communicate when
necessary to produce results from the
combined execution. Often, that logical
segment is captured by the thread OS
primitive that is nothing more than a long
lived iteration. Because of thread
performance implications on thread start-up,
the thread stays active for long periods of
time. This forces a particular pattern. Code is
structured as long sequences that use
blocking or synchronous calls, and only deals

Sachin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 283

with one thing at a time. Further, threads
assume that the primary communication
between them is shared memory, forcing the
programmer to use very explicit, error-prone
methods to synchronize access to that shared
memory.
Coordination and Failure Handling -
Coordinating between components is where
most of the complexity in large software
programs lies. A mismatch of interaction
patterns, such as calling methods on objects
versus using OS signaling primitives versus
using queues plus signaling, leads to
unreadable code, where the runtime behavior
changes drastically between coordination
approaches. More importantly, the error
handling approaches are ill-defined and again
vary drastically.
VPL Introduction
Microsoft Visual Programming Language
(VPL)[12] is an application development
environment designed on a graphical
dataflow-based programming model. Rather
than series of imperative commands
sequentially executed, a dataflow program is
more like a series of workers on an assembly
line, who do their assigned task as the
materials arrive. As a result VPL is well
suited to programming a variety of
concurrent or distributed processing
scenarios.
VPL is targeted for beginner programmers
with a basic understanding of concepts like
variables and logic. However, VPL is not
limited to novices. The programming
language may appeal to more advanced
programmers for rapid prototyping or cod.e
development. As a result, VPL [13] may
appeal to a wide audience of users including
students, enthusiasts/hobbyists, as well as
possibly web developers and professional
programmers.

2.0 LITERATURE REVIEW

The Cloud computing is now being
employed to build a massive platform for
many company such as Google, Microsoft,
Facebook, Yahoo, Ebay, and many more.
Underneath the cloud is the use of large scale

clustering technology to link together a
massive number of computing resources such
as computing nodes and storages with high
speed gigabit network. Currently, the
multicore technology even helps deliver a
very high performance computing system at
a very low cost for the cloud computing
system. Nevertheless, one of the main
obstacles for a broad adoption of cloud
computing technology is the lack of standard
in system the configuration, management,
and programming. Most of the well-known
cloud implementation is still rely on a
proprietary technology. For example, a cloud
can be viewed by programmers through
various API such as Amazon EC2 API, Go
Grid API [14], Sun Cloud API, Elastic Hosts
API. Although many open standard efforts
are now underway such as OCCI by OGF,
the work is still in a very early stage.
Cloud computing system must find a way to
solve the problem of service description and
conversion, that is, to convert the user's
service demand into infrastructure needs.
Cloud service [11] users will be a huge user
group, and different consumers have
different levels of requirements towards
Quos. Therefore, when the cloud system set
up, it should consider the multiple Quos
needs of different users. Static algorithm
which is wildly used currently is suitable for
a work process of resources allocation
without immediate change. Most existing
scheduling algorithms are only suitable for
simple processes or the Quos constraints that
only have one single object. Facing the
multiple Quos constraints that cloud
computing required, how to ensure multi-
level Quos, how to meet the multi-workflow,
we need to find out new solutions. The most
important advantage of Cloud computing [15]
are low-cost equipment and highly universal
function. So the hardware can be easily
extended, for the cluster data, it needs to
divide the task as much as possible. The way
of programming have to make a program
could automatically run on different scalable
processing nodes. The unusual fault
conditions of the low-cost machines are far
more than the proprietary hardware platform.

Sachin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 284

Firstly, the design of cloud system must take
full account of the machine anomalies.
Secondly, it also needs to consider about the
problem that the speed does not match the
heterogeneous environment, and this has a
great influence on the execution of parallel
task. Suppose that lets take example for
multitenancy issue. Multitenancy is another
property that a service oriented architecture
must have. This is what a lot of current cloud
computing architectures do not have. The
reason multitenancy is important is for
efficiency. Terms that need to be known are
single tenancy and multitenancy. Single
tenancy is when a provider has an application
running and only one user is using it at a time.
An example of a single tenancy program
would be a text editor. A user has an
application on their computer and only they
can run that application. Multitenancy [16] is
when a provider has one instance of a
program running on a server and many
people connect and use the application
instance at the same time. An example of a
multitenancy program would be Gmail or
hotmail.
There are positives and negatives to both of
these options. Most of the advantages to
single tenancy programs are when the
program is being used on a person's personal
machine and not when running on the cloud.
The major downside to single tenancy
programs on the cloud is that they are less
efficient because for each person that uses
that application there has to be a new
instance and this uses a large amount of
resources. The positives of multitenancy are
everything is handled for the user by the
provider. This includes security of user data,
backup of user data, and updates to software
and hardware. The downsides are that you
have to trust that provider is doing their job.
There is never any guarantee that the
company providing the service will not go
out of business or make a mistake managing
the user’s data.
Issues with Current Clouds [17]

 Users are often tied with one
cloud provider

 Computing components are
tightly coupled

 Lack of Multi-tenancy
supports

Thus it becomes very cumbersome and
monotonous to follow the approach that was
mentioned. As a result, changes can cause
confusion as the project team proceeds. The
real systems rarely follow the models as
proposed. We would appreciate that the
proposed system should be more flexible as
compared to the former systems.

3.0. System Architecture
.

User

Cloud User
Interface

Cloud
Application

OS DSS

CCR

CSM

Service Service

OS

HW

OS

HW

Interconnection Network

Sachin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 285

Figure 1: Service Oriented Cloud Computing System

This is the system architecture of our
Proposed System which uses service oriented
applications in cloud computing which is a
method for providing more flexible and
scalable service.
In CCR, application is constructed using a set
of services. Each service is implemented as a
thread pool controlled by Dispatcher. When
launched, the main part of the application
will break the task to be executed into many
small sub-tasks. Then, Arbiter will queue
these computing request with data to the
work queue of a Dispatcher. The role of
Dispatcher is to dispatch the work unit to the
threads. After the result has been generated,
output is sent to Arbiter again as an event.
Then, Arbiter can collect the result and save
them to storage for later processing. CCR
helps manages both port and threads with
optimized dispatcher that efficiently iterate
over multiple threads. According to this
programming model, a Master/Worker
paradigm can be directly apply to structure
the parallel and distributed application. Since
CCR can manage remote invocation of
thread across machine automatically, a single
program can easily be scaled to run on
multiple machines with a very minor
configuration. As the software scale across
one machine, the Decentralized Software
Services (DSS), a layer of software on top of
CCR, can be used to link multiple services
component together across multiple
machines. DSS provides a lightweight and
representational state transfer (REST)
oriented application model with a system
level approach for building high performance,
scalable applications. DSS particularly suited

for creating coarse grain applications, and.
DSS uses decentralized software services
protocol (DSSP) and HTTP for interaction
with services, and DSS provides a hosting
environment, publish/subscribe, security,
monitoring, logging, debugging, they are set
of infrastructure services can use for create
service.
Fig.1 illustrates the concept behind the
software development paradigm used. To
developed a cloud application, programmer
must decompose the application is to a set of
CCR/DSS services and cloud application that
integrate and coordinate these services
together. The decomposition of service is
usually very straight forward in CCR system.
An easy to use services development
environment (as shown in Fig. 1) that comes
with the system can dramatically help
shorten the development time. When user
application needs resources for the execution,
cloud application will send the request to
CSM. Then, CSM will discover and allocate
a number of services (resources) to users in
an on-demand basis. After CSM finally
allocates services, it will send services
information back to Cloud application.
Finally, Cloud application can directly
communicate with a group of services and
coordinate the execution of services to solve
the analysis problem. User can view the
results using UI component for user
interaction
4.0 Algorithm:

Step1: Start the DSS manifestStep2: Create
project
Step3: Select project type
Step4: Adding and configuring nodes
Step 5: Adding and Partnering Services
Step6: Reserve the ports of nodes
Step7: Create Manifests and Deploy
Packages
Step8: Run the manifest
Step 10: Stop

5.0 SYSTEM IMPLEMENTATION

System implementation is stage in the project
where the theoretical design is turned into the

Sachin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 286

working system. The most crucial stage is
giving the users confidence that the new
system will work effectively and efficiently.
The performance of reliability of the system
is tested and it gained acceptance. The
system was implemented successfully.
Implementation is a process that means
converting a new system in to operation.
Proper implementation is essential to provide
a reliable system to meet organization
requirements. During the implementation
stage a live demo was undertaken and made
in front of end-users.

5.1 Methods and Techniques to be used
Here we make use of two different services
to create smart vision.
1. Simple Vision
2. Webcam
1. The Simple Vision service shows you how
to write a service that implements image
processing functions using a webcam. This
service performs a colour object, a simplified
face and hand gestures detections. Other
services can get the detection results by
subscribing to a Simple Vision service.

2. The Webcam service contract enables you
to obtain data from a conventional Webcam
(web camera) that is connected using USB or
IEEE 1394 (Firewire).

Step 1: Create a Distributed Application
Project

Start the Microsoft DSS Manifest Editor and
choose New from the File menu to create a
new project.

Figure 2 – Creating new project

You can edit a Microsoft DSS Manifest for
a single node directly. In order to create a
distributed application select Microsoft DSS
Distributed Application.

Figure 3 – Selecting project type

The Application page shows the list of all
services in your application independent of
the node they run on. The Nodes page shows
all DSS nodes and the services that they run.

Sachin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 287

Figure 4 - A new project

Step 2: Adding and Configuring Nodes

Add a second node using the Add button (or
the right-click context menu).

Figure 5 - Adding a new node

The application now has two nodes. Name
and allocate the host port address for each
node that is to be created. We can easily
change this by replacing local host in the

transport configuration of your node to the
DNS names or IP addresses of the computers
you want to use. Ports for the HTTP transport
must be reserved by an administrator before
they can be used

Figure 6: Adding and Partnering Services

Here the instances of service are added and
linked together across different nodes.
Distribute services across nodes.

Sachin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 288

Figure 7: Create Manifests and Deploy
Packages

In order to be able to run the application we
need to create DSS manifests and DSS
deploy packages for each node. From the
Deploy menu select Create Deployment
Package.

The deployment packages have been created
successfully

Figure 8: package deployment

Run the package from a command line or via
the Manifest Editor.

This will prompt you to make sure that the
Package Deployer service is running on
each of the computers on which you want to
run the nodes .Make sure that the package
deployer service is running on the target
machines

The application is now running. You can
inspect the nodes using a web-browser.

Click Stop to stop the application and
terminate the nodes.

5.2 TECHNOLOGIES USED

Microsoft® Robotics Developer Studio 4

Microsoft® Robotics Developer Studio 4
(RDS 4) is a Windows-based environment
for hobbyist, academic and commercial
developers to create robotics applications for
a variety of hardware platforms. RDS
includes a lightweight REST-style, service-
oriented runtime, a set of visual authoring
and simulation tools, as well as tutorials and
sample code to help get started.

RDS includes the following components:

 CCR - Concurrency and Coordination
Runtime

 DSS - Decentralized Software
Services

 VPL - Visual Programming Language
 VSE - Visual Simulation

Environment

Lightweight REST-style, services-oriented
runtime

RDS includes a .NET-based REST-style,
services-oriented runtime consisting of two
components: Concurrency and Coordination

Sachin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 289

Runtime (CCR) and Decentralized Software
Services (DSS).

Microsoft Visual Programming Language
(VPL)

Microsoft Visual Programming Language
(VPL) is an application development
environment designed on a graphical
dataflow-based programming model. Rather
than series of imperative commands
sequentially executed, a dataflow program is
more like a series of workers on an assembly
line, who do their assigned task as the
materials arrive. As a result VPL is well
suited to programming a variety of
concurrent or distributed processing
scenarios.

VPL is targeted for beginner programmers
with a basic understanding of concepts like
variables and logic. However, VPL is not
limited to novices. The programming
language may appeal to more advanced
programmers for rapid prototyping or code
development. As a result, VPL may appeal to
a wide audience of users including students,
enthusiasts/hobbyists, as well as possibly
web developers and professional
programmers

6.0 RESULT AND ANALYSIS

Output with relevant information
The figure 9 shows the implementation of
deployment packages.

The packages needs to be deployed in order
to interface the nodes as shown in fig. 9.

Figure 9: Output with relevant information

The above figure explains all the services
that are initiated and run successfully and
also determines the error that needs to be
addressed.

Sachin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 290

Figure 10: smart vision

Fig 10 shows a DSS node is created and a
service instance is generated. While the
service is running, it can detect a colour
object, a face, etc. The service provides four
types of notifications. One for a colour
registration, the others, for sending detection
results

7.0 Conclusion and Future Scope

Service-oriented and cloud computing
combined will indeed begin to challenge the
way in which we think about enterprise
computing. However, the potential for
sharing could not only remove historical
barriers but also encourage organizations to
think more collaboratively.
In this paper, concluded proposed a service-
oriented cloud computing architecture
systems (SOCCS) that allows an application
to run on different clouds and interoperate
with each other. The SOCCA is a 4-layer
architecture that supports both SOA and
cloud computing. SOCCA supports easy
application migration from one cloud to
another and service redeployment to different
clouds by separating the roles of service logic
provider and service hosting/cloud providers.
It promotes an open platform on which open

standards, ontology are embraced. More
scalable and better Cloud Service
management (CSM) is planned in future for
better interoperability.

8.0 References

[1] Wei-Tek Tsai*, Xin Sun, Janaka Balasooriya
Department of Computer Science Arizona State
University “Service-Oriented Cloud Computing
Architecture” Seventh International Conference on
Information Technology 2010.
[2] Rakpong Kaewpuang, Putchong Uthayopas
“Building a Service Oriented Cloud Computing
Infrastructure using Microsoft CCR/DSS System”
Fourth International Conference on Computer
Sciences and Convergence Information Technology
2009.
[3] W.-T. Tsai, X. Sun, and J. Balasooriya. “Service
oriented cloud computing architecture. Inforamtion
Technology, New Generations (ITNG),” Seventh
International Conference, pages 684{689, 2010.
[5] L.-J.Zhang and Q. Zhou. Coca: “Cloud
computing open architecture”. Web Services 2009,
ICWS 2009, IEEE International Conference, pages
607{616, 2009.
[6] M.P. Papazoglou et al., “Service-Oriented
Computing: A Research Roadmap,” Int’l J.
Cooperative Information Systems, vol. 17, no. 2, , pp.
223–25 2009
[7] Carl Osipoy, German Goldszmidt, Mary Taylor,
and Indrajit Poddar. Develop and Deploy Multi-
Tenant Web-delivered Solutions using IBM
middleware: Part 2: Approaches for enabling multi-
tenancy (2009, May)
[8] Phillip A. Laplante, Penn State University Jia
Zhang, Northern Illinois University Jeffrey Voas,
SAIC ” Distinguishing between SaaS and SOA” 2009.
[9] Liang-Jie Zhang and Qun Zhou CCOA: Cloud
Computing Open Architecture IEEE International
Conference on Web Services 2009.
[10] Ying Huang et al., "A Framework for Building a
Low Cost, Scalable and Secured Platform for Web-
Delivered Business Services,", 2009.
[11] Wang, Lizhe; von Laszewski, Gregor; Kunze,

Marcel; Tao, Jie “Cloud computing: A Perspective
study”2009.
[12] Carl Osipoy, German Goldszmidt, Mary
Taylor,and Indrajit Poddar. Develop and Deploy
Multi-Tenant Web-delivered Solutions using IBM
middleware: Part 2: Approaches for enabling multi-
tenancy (2009, May).
[13] Ying Huang et al., "A Framework for Building
a Low Cost, Scalable and Secured Platform for Web-
Delivered Business Services," , 2009.
[14] Phillip A. Laplante, Penn State University,Jia
Zhang, Northern Illinois University Jeffrey Voas,
SAIC” What’s in a Name? Distinguishing between

Sachin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 291

SaaS and SOA ”P ublished by IEEE Computer
Society.2009
[15] Shrikant Mulik, Sushil Ajgaonkar, and Kavindra
Sharma, L&T Infotech” Where Do You Want to Go in
Your SOA Adoption Journey?” Published by the IEEE
Computer Society.2009
[16] Christian Vecchiola, Xingchen Chu, and
Rajkumar Buyya, "Aneka: A Software Platform
for.NET-based Cloud Computing," in High Speed and
Large Scale Scientific Computing, 2010.
[17] B. Kamala, B. Priya, J. M. Nandhini/
International Journal of Engineering Research and
Applications (IJERA) “Platform Autonomous Custom
Scalable Service using Service Oriented Cloud
Computing Architecture” ISSN: 2248-9622
www.ijera.com Vol. 2, Issue 2, , pp.1467-1471, Mar-
Apr 2012.

