
Nitin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 219

Comparision Study on methods of software
size measure

Nitin M Shivale1, Lalit V Patil2,S D Joshi3

1Department of Information Technology, University of Pune. 3Bharti Vidyapeeth Deemed University
1STES’s Smt. Kashibai Naval College of engineering Pune-41,

3Bharti Vidyapeeth Deemed University College of Engg, Dhankawadi, Pune – 43
1nitinrajni3@gmail.com,3sdj@live.in

2STES’s Smt. Kashibai Naval College of engineering Pune-41,
2lalitvpatil@gmail.com

Abstract—In the component based software a development cost is
low due to the integration of a component with each other’s. The
black-box nature of the components is improper for the
traditional size measure that leads to the inaccuracy in the
component based software estimation. Software size measure is a
most important task in the project management such as planning
and estimation. Over the time component attributes and
relationships could change and differ for development
environments that also create a problem in the accuracy of
estimation. In this paper we compair various size measure
methods. The accurate measuring the system level size in the
component based software development generates good
prediction of the cost estimation. Accurately measuring the
component size method used the unified modelling language
specification. We also suggest the importance of size measure by
comparing the various size measure methods along with cost
estimation models. At last considering a case study, the feasibility
of the size measure method for component based system is
proved.

Keywords— Component Based Software Developmet (CBSD),
Component Point (CP), Function Point (FP).

I. INTRODUCTION

An important factor in selecting a cost estimation model is
the accuracy of its estimation result and that accuracy comes
through the correct measure of the software size. Many
estimation models have been proposed over the last 30 years
and may be classified into two major categories: algorithmic
and non-algorithmic [2]. Each has its own strength and
weaknesses. Now a day’s models is based on Generic
algorithm, neural network simulation, soft computing, Fuzzy
Logic modelling etc. Here we propose a new component fuzzy
Cocomo-II (CF-Cocomo- II) model to improve the accuracy
of CBSD cost estimation.

This paper is organized as follows: section II describes the
background and related work with comparisons of various size
measure methods results along with Cocomo model [1].
Section III describes proposed system with mathematical
models and results. Section IV describes conclusion and
finally future work.

II. SOFTWARE DEVELOPMENT SIZE MEASURE METHODS

As the technology grows up in a rapid way, software has
become the most crucial part of the computer system project.
Accurate cost estimation is very much important to both
developers and customers. It can help to classify and prioritize
development projects with respect to an overall business plan.
Many practitioners have struggled with three fundamental
issues [3].
1. Which software cost estimation model to use for the
accurate estimation?
2. Which software size measurement to use for this cost
estimation model?
3. How we can say the estimation is good?
To answer the above different questions various estimation
and size measurement methods have been established.

A. Traditional Method

The LOC is the main size measures used in the traditional
methods for whole software system. LOC means the number
of lines of the delivered source code of the software,
excluding comments & blank lines [4]. A typical method for
estimating the code size is to use ‘Expert Judgement’ together
with a technique called PERT [5].

Sl + Sh + 4Sm
S = ---------------------

6
Where,

 Sl = Lowest Possible Size
 Sh = highest Possible Size
 Sm = Most Likely Size

The general effort model, applicable to all application
levels and modes is given by [2]. Representing a monolithic
approach to cost estimation

E = A (EDSI) B x (EAF)
Where,

 E = an effort estimation expressed in man-month
 EDSI = Estimate of Delivered Source Instruction
 A, B = Constants [2]
 EAF = Effort adjustment factor

Example:-
An example of Human resource application using the Basic
Cocomo model to estimate the effort required in developing
an 8500 line program in the organic mode assuming EAF is
nominal I: e 1 is given below.

Nitin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 220

E = 3.2 (8500) 1.05 x (1)
= 30 MM (1)

Pros:
 Expert judges the system hence fast estimation.
 An expert with the relevant experience can provide

good estimation.
Cons:

 Dependent upon the expert.
 An early phase of software life cycle inapplicable to

estimating the code size.
 Single Effort adjustment factor applies on the whole

system.

B. Component Based approach with SLOC.

Today development practices characterized a software
system as an independent component. These components may
be internally developed reusable components, Commercial-
Off-The-Shelf (COTS) component or newly developed
software artifacts [14]. To accurately predict effort in CBSD a
fine grained approach is needed to identify and classify the
relevant cost factors. Bohem uses the intermediate Cocomo
model to cost to individual components with 15 cost factors.

Example: Consider the Human Resource Application 8500
line project made up of the Component listed in Table I.

TABLE I
NOMINAL COMPONENT MAN-MONTH FOR COMPONENT

Component Name EDSI % of
Total

CMMnom

Employee 2000 23.4 % 7.06
Job 3000 35.3 % 10.60
Assignment 3500 41.2 % 12.36

Based on the 30 MM computed in equation (1) for E, the
expected number of EDSI per man-month is given by:

(EDSI/MM) nom = 8500/30
= 283 EDSI/MM

Using the EDSI/MM, every component is then apportioned its
contribution to the total. For example, the nominal component
man-month (CMMnom) for the employee component is given
by:
CMMnom = EDSIper comp / (EDSI/MM) nom

= 2000/283
= 7.06 CMMnom.

After computing CMMnom for each component, the effort
adjustment factor (EAF) is calculated individually for each
component. Thus we are able to account for variance among
the cost factors for the different component. For example, the
CMMadj for the Job Component is calculated by:
CMMadj = (CMMnom) x (EAF)

= (10.60) x (1.13)
= 11.98 CMMadj

TABLE II
COMPONENT COCOMO WITH EFFORT ADJUSTMENT

Component
Name

EDSI % of
Total

CMM
nom

EAF CMMadj

Employee 2000 23.4 % 7.06 0.89 6.28
Job 3000 35.3 % 10.60 1.13 11.98

Assignment 3500 41.2 % 12.36 1.05 12.98

By factoring the components separately through adjusting
component man- month in Table II, a new estimate of 31.24
MM is found [11].
Pros:

 Software size and many other cost factors for estimating
are considered.

 CBSE embodies the “buy, don’t build” philosophy.
 Reuse, flexibility, Easy to maintain.

Cons:
 Unable to capture all of the factors that could

potentially impact component based development ([8],
[9]).

 Hardly to build the environment that is fitted to the
component.

 Due to the Black-box nature of component accuracy of
size measure is less.

C. Component Based approach with Function Point

Albrecht proposed function point for measuring the size of
the procedural business system from the end user’s point of
view. The total number of function points depends on the
counts of (in terms of format or processing logic) types in the
five classes and 14 general system characteristics (GSC) as
explained in [10]. Some of the terms used in function point
namely Unadjusted Function Point (UFP), Total Degree of
Influence (TDI), Value Adjustment Factor (VAF), and
Function Point (FP).

VAF = 0.65 + (0.01 x TDI)
FP = UFP x VAF

Where TDI = Sum of 14 GSC is on scale 0-5.
UFP = Sum of all the complexities of five classes.

Example: Consider the Human Resource Application
Project and computing the function point for the accurate size
of the project to the estimation.
1. Computing the complexity of all five classes namely
External Interface Files (EIFs), Internal Logical Files (ILFs),
External Inputs (EI’s), External Outputs (EO’s) and External
Queries as described in [7].
2. Secondly computing the Unadjusted Function Point count
(UFP) as shown in Table III.

TABLE III
COMPUTING UNADJUSTED FUNCTION POINT (UFP) [7]

Function
Type

Function
Complexity

Count Weight FP FP
%

Internal
Logical Files
(ILFs)

Low 0 7 0
26 %Average 3 10 30

High 0 15 0
External
Interface Files
(EIFs)

Low 0 5 0
12 %Average 2 7 14

High 0 10 0
External
Inputs
(EI’s)

Low 0 3 0
31 %Average 9 4 36

High 0 6 0
External
Outputs
(EO’s)

Low 0 4 0
13 %Average 3 5 15

High 0 7 0

Nitin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 221

External
Queries
(EQ’s)

Low 0 3 0
17 %Average 5 4 20

High 0 6 0
Total Unadjusted Function Point Count (TUFPC) 115 100

3. Computing the value adjustment factor (VAF) in [7].
VAF = (0.65 + (0.01 x 23))

= 0.88
FP = 115 x 0.88

FP = 101
Now if the application is implemented in the ‘C’ & Pascal
Language then the Size Measure (SM) as follows:
SM(C) = (101 x 125), SM (Pascal) = (101 x 85)

= 12625 = 8585
= (12.62) KLOC = (8.5) KLOC

4. Using the Bohem Cocomo-II Model for effort estimation
and considering all the 17 effort multiplier factors EAF =
0.184295 in [12].

E (C) = 3.2 (12.62)1.05 x 0.184295
= 45.84 x 0.184295
= (8.44) MM

E (Pascal) = 3.2 (8.5)1.05 x 0.184295
= 30.27 x 0.184295
= (5.57) MM

Pros:
 A normalization factors for software.
 Applicability in the early phase of the software life

cycle.
Cons:

 FPA criticizes as not being universally applicable to all
types of software [13]. FPA doesn’t capture all
functional characteristics of real time software.

 FPA doesn’t support the object oriented and component
based software system size measures effectively.

D. Comparisons of Size Measure Methods

The Table IV shows the result of all the methods for the
cost estimation. Analysing this we are able to understand that
which size measurement method gives us the accurate size for
the estimation. As per the rule of IFPUG 1FP = 125 lines of
code in ‘C’ Language and 1FP = 85 lines of code in PASCAL
Language [6].

TABLE IV
RESULT OF SIZE MEASUREMENT METHODS

Method Size
Type

Language Size Estimate
Model

Effort
MM

Traditional
Method SLOC C 8500

Basic
Cocomo 30

CBSD
Method SLOC C 8500

Intermed
iate

Cocomo
31.24

CBSD
Method FPA

PASCAL 101
Cocomo

II
5.57

C 101
Cocomo

II
8.44

E. Need of size measure methodology in CBSD

As we have known the importance of size in effort
estimation the above Table IV shows that the importance of
accurate size measurement very clearly. Therefore it is quite
clear that the effort estimation of CBSD is proportional to the
size of the CBSS. Hence we required a size measure
methodology which more precisely gives us the exact size of
component based systems [15]. Which help us in the accurate
estimation for building the software on time in the competitive
market.

III. CASE STUDY ON COMPONENET-BASED SYSTEM SIZE

MEASURE

To overcome and address the problem discussed in need of
size measure methodology in CBSD. A Case study of Global
Positioning System with Component Point for correct size
measure is considered as shown in Fig. 1. [17].

Fig. 1 GPS Component Specification

A. Component Point

The idea behind CBSD is to reduce in house development
with minimum bugs thereby minimizing the reload time and
risk. Due to the black box nature of component the size and
development effort of CBSS have been very much dependent
on the number of components integrated. Whereas size is
proportional to the number of components integrated. The
Component Point Process as shown in Fig. 2.

Fig. 2 Component Point Estimation Process

Nitin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 222

3 3
TUCP = ∑ ∑ Cij x Wij

i=1 j=1
Where,
Cij = the number of Component of type i with complexity

Level j
Wij = the weight given for the component type i with

Complexity level j
TUCP = Total Unadjusted Component Point

VAF = 0.65 + (0.01 x TDI)
The final CP count is then computed as follows equation.

CP = TUCP x VAF

B. Component Complexity of GPS [17].

The Table V shows the Component complexity.

TABLE V
COMPONENT COMPLEXITY

Compnent Component
Type

IFCI ITCI Component
Complexity
Level

User Dialog User (UC) 7 0.420 Low
Navigator Domain

(DC)
7 0.012

Low
GPRS
Controller

Service (SC) 7 1.667 Average

GIS
Connection

Service (SC) 6 2.300 Average

The Table VI shows the Unadjusted Component Point
Count.

TABLE VI
UCP COUNT FOR THE GPS [17].

Compnent
Type

Component Complexity Level Total
Low Avg High

DC 1 x 3 = 3 .. x 6 =.. ..x 10 = .. 3
UC 1 x 4 = 4 .. x 7 =x 12 = .. 4
SC .. x 4.5 = .. 2 x 7=14 ..x 11.5 =. 14
UCP 21

The Table VII shows the Toal Degree of Influence.

TABLE VII
INFLUENCE OF GSC [17].

Sr.No Characteristics Influence
1. Data and Online Services 5
2. Distributed Processing 2
3. System/Component Performance 4
4. Development Rigidity 3
5. User Friendliness 4
6. System Complexity 3
7. Installability 1
8. Operability 3
9. Maintainability 2
10. Multi-Site Use 0
11. System/Component Relaibility 4
12. System/Component Portability 3
13. Component immaturity 4
14. Lack of Component under support 3
TDI 41

C. Result and Evaluation Method

As an application given in [17] provides the
VAF = 0.65 + (0.01 x 41)

= 1.06
CP = TUCP x VAF

= 21 x 1.06
= 22.26 for the global positioning system development

in CBSD. Applying the proposed methodology to it the results
we get as follows.

17
EFFORTpm = 2.94 x [22.26] E x ∏ EMi

i=1
5

E = 0.91 + 0.01 x ∑ SFj
j=1

E = 1.097 and ∏ EM = 0.172459
EFFORTpm = 15.2463758622

SCHEDULEmonths = 2.1455
AVG STAFFpeople = 7.1062

IV. CONCLUSIONS & FUTURE WORK

There are so many models to estimate the results. Every
size measure methods has it’s own pros and cons. We have
focused mainly the size measure for CBSD. Due to the black
box nature of component traditional methods fails to capture
the accurate size for estimation. Size measure is the important
task in effort estimation. More accurate the size more accurate
the effort estimation result.

COCOMO Post architecture model uses seventeen cost
drivers to adjust the final result. Providing the accurate size to
the model produces more accurate result.

REFERENCES

[1] B. W. Boehm, Software engineering Economics, Englewood ciliffs. N.
J: Prentice- Hall, 1981.

[2] C. E. Walston and C. P. Felix, “A method of proposing measurement
and estimation”, IBM system journals, vol. 16, no. 1, pp, 55-73, 1977.

[3] F. J. Heemstra, “Software Cost Estimation”, Information and software
Technology, vol.34, no.10, pp. 627-639, 1992.

[4] N. E. Fenton and S. L. Pfleeger, Software metrics: A rigorous and
practical Approach,PWS publishing company. 1997.

[5] J. D. Aron, Estimating Resource for Large Programming Systems,
NATO science Committe, Roam, Italy, octomber 1969.

[6] IFPUG: International function Point Group, http://www.ifpug.org.
[7] Scribd: Digital library content, http://www.scribd.com/fp
[8] Leonhard C. Davis, J., “Job-shop Development model: A Case study”,

IEEE software, vol. 12, no. 2, PP.86-92, March, 1995.
[9] McConnell S., “Less is More”, Software Development, vol. 5, no. 10,

pp. 28-34, October, 1997.
[10] A. J. Albrecht, J. E. Gaffney, “Software Function, source lines of codes,

and development effort prediction: a software science validation”,
IEEE Trans software Engg, SE. 9, pp. 639-648, 1983.

[11] Randy k Smith, A. Parrish, J. Hale, “Cost estimation for Component
based software development”, ACM 1-58113030-9/98/0004, 1998.

[12] T. N. Sharma, “Analysis of software cost estimation using COCOMO-
II”, IJSER, vol. 2, issue 6, June- 2011.

[13] Abran. A, Robillard. P. N., “Function and points: a study of their
measurement processes and scale transformations”, journal of system
and software 25(2), 171-184.

[14] T. wijayasirivardhane, R. Lai, K. C. Kang, “Effort estimation of
Component-based software development- a survey”, IET software, vol.
5, iss. 2, pp. 216-228, 2011.

Nitin et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 223

[15] Verner. J., Tate. G, “A software size model”, IEEE Transaction on
software engineering 18(4), 265-278, 1992.

[16] Iman Attarzadeh and seiw Howk ow, “Improving Estimation Accuracy
of the COCOMO II using an adaptive fuzzy logic Model”, IEEE
International Conference on fuzzy systems, Taipei, Taiwan, June 27-30,
2011.

[17] T. Wijayasirivardhane, R. Lai, “Component point: A System level size
measure for component- based software Systems.” The journal of
systems and software 83(2010) 2456-2470.

