
Manish et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 214

Implementation of Different Operations for Data
Transfer by AMBA-Advanced Extensible Interface

Manish A Lakhiyar#1, Dharmesh Khandhar#2

#1 Student of master of engineering in electronics & communication,c u shah college of engineering and
technology,surendranagar,Gujarat,india,

#2 Head of Department of electronics & communication,c u shah college of engineering and technology,surendranagar
Gujarat,india

1manish_lakhiyar@yahoo.com

2ddk_2008@yahoo.com

Abstract— The advanced development in the field of mobile, DSP
motivated the design engineer to integrate the complex systems of
multimillion transistors in a single chip. This paper investigates
open core based SOC design platform. This paper basically
described the different operation of data transfer between
IP cores in AMBA Advanced extensible interface. This
operations are such as simple read/write operation,
multiple read/write operation, Open core uses a standard bus
AMBA-advanced extensible interface Bus to alleviate System-on-
Chip problem. The various issue related to AMBA and AMBA-
advanced extensible interface is presented in this paper. These
include AMBA specification types of buses/interfaces, and timing
specification. All the designs are validated by Modelsim. In this
work the design of an AMBA-advanced extensible interface basic
block is presented. AMBA-advanced extensible interface is a
high-performance bus in AMBA (Advanced Microcontroller Bus
Architecture) family. This AXI can be used in high clock
frequency system modules. The Advanced Extensible Interface
acts as the high-performance system backbone bus.

Keywords: AMBA AHB,AXI, IP cores ,SOC,VERILOG

I. INTRODUCTION

The Advanced Microprocessor Bus Architecture (AMBA)
defined by ARM is now most widely used open standard for
an on-chip bus system. The main aim of this paper to make
ease the component design, by allowing the combination of
interchangeable components in the MPSOC design. It
promotes the reuse of IP components, so at least a part of the
SOC design can become a composition, rather than a complete
rewrite every time. By studying The AMBA specification 3.0,
it defines an on chip communications standard for designing
high-performance embedded microcontrollers. 3 distinct buses
are defined by the AMBA specification.

 The Advanced Extensible Interface(AXI)
 The Advanced High-performance Bus (AHB)
 The Advanced System Bus (ASB)

A. Advanced Extensible Interface(AXI)

AXI is the 3rd generation protocol defined by AMBA.
AMBA AXI protocol is based on the concept point-to-point

connection. It is mainly targeted for high-performance,
high-frequency system Designs and includes a number of
features that make it suitable for a high-speed submicron
interconnects.

B. Advanced High-performance Bus (AHB)

The AHB bus is used for high-performance, high clock
frequency system modules. The AHB acts as the high-
performance system backbone bus. AHB supports the
efficient connection of processors, on-chip memories and
off-chip external memory interfaces with low-power
peripheral macro cell functions. AHB is also specified to
ensure ease of use in an efficient design flow using
synthesis and automated test techniques.

C. Advanced System Bus (ASB)

The AMBA ASB is for high-performance system
modules. AMBA ASB is an alternative system bus suitable
for use where the high -performance features of AHB are
not required. ASB also supports the efficient connection of
processors, on-chip memories and off-chip external
memory interfaces with low-power peripheral macro cell
functions.

II. AMBA –AXI
AXI is the 3rd generation protocol defined by AMBA.

AMBA AXI protocol is based on the concept point-to-point
connection. It is targeted at high-performance, high-frequency
system Designs and includes a number of features that make it
suitable for a high-speed submicron interconnects.

AXI protocol supports data transfers up to 256 beats and
unaligned data transfers using byte strobes. In this system 16
masters and 16 slaves are interfaced. Each master and slave
has their own 4 bit ID tags. AMBA AXI system consists of
master, slave and bus (arbiters and decoders). The system
consists of five channels namely write address channel, write
data channel, read data channel, read address channel, and
write response channel. The AXI protocol supports the
following mechanisms.

Manish et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 215

 Unaligned data transfers and up-dated write response
requirements.

 Variable-length bursts, from 1 to 16 data transfers per
burst.

 A burst with a transfer size of 8, 16, 32, 64, 128, 256,
512 or 1024 bits wide is supported.

 Updated two new signal AWCACHE and
ARCACHE signaling details.

In AXI each transaction is burst-based which has addressed
and control information on the address channel that describes
the nature of the data to be transferred. The data is transferred
between master and slave using a write data channel to the
slave or a read data channel to the master.

A. AXI system design
A typical AMBA AXI bus system design contains the

following components:
AXI Master: AMBA AXI master which is able to initiate

read and write operations by providing an address and control
information with the help signals. For performing write
address and data operation the transaction is initiated by input
signals awaddr, awid, awcache, awlock, awprot, awburst and
on the same lines for read address and data operations enable
input by araddr, arid, arcache, arlock, arprot, arburst signals.
The addresses of read and write operations are validated by
VALID signals and sent to interface unit.
AXI slave: AXI bus Slave responds to a read or write
operation within a given address-space range. The bus Slave
signals back to the active Master the success, failure or
waiting of the data transfer. The AXI slave consists of
common read/ write buffer which stores the read/ write
address and data. Pending read address register stores the
remaining read addresses to be sent; pending write address
register which stores the remaining write addresses to be sent
and pending write data register which stores the remaining
write data to be sent. The read/write state machines receive
internal inputs from the read/ write buffer. The AXI slave test
bench initiates the read or write transaction and the output
from the AXI slave are standard read/write channel signals.
The AXI slave receives the write data in the same order as
address.
AMBA AXI bus Interconnect: The AXI bus interconnect

block consists of arbiter and decoder. When more than one
master initiates a transaction simultaneously, the arbiter block
gives priority to access the bus. The decoder decodes the
address sent by master and the control goes to one slave out of
4. The AMBA AXI interface decoder is centralized digital
block. The decoder decodes the address sent by master and
goes to one slave out of 4. 0-150 locations are meant for slave-
1, next 151-300 addressable locations are meant for slave-2,
and so on till slave 4,ideally AMBA AXI support up to 16
slaves .
Arbitration: The arbitration mechanism is used to ensure that

multiple Master has access to the bus at any time, so this
mechanism enables parallel access path between multiple
masters and slaves.

Figure 1. AMBA AXI bus interconnection

B. AXI Signals
This section describes basics the AMBA AXI signals. All

signals are prefixed with the letter A, ensuring that the AXI
signals is differentiated from other similarly named signals in
a system design such as AHB signals.

Aclk
Clock

Global clock signal. Here
All the signals are sampled
on the rising edge of the
clock.

ARESETn
Reset
source

Global reset signal. This
signal is active LOW.

AWID[3:0] Master

Write address ID. This
signal is the identification
tag for the write address
group of signals.

AWADDR[31:0] Master

Write address. The write
address bus gives the
address of the first transfer
in a write burst transaction.

AWLEN[3:0] Master

Burst length type. The burst
length gives the exact
number of transfers in a
burst. This information
determines the number of
data transfers associated
with the address.

AWSIZE[2:0] Master

Burst size. This signal
indicates the size of each
transfer in the burst. Byte
lane strobes indicate exactly
which byte lanes to update.

AWBURST[1:0] Master

Burst type. The burst type,
coupled with the size
information, details how the
address for each transfer
within the burst is
calculated.

AWLOCK[1:0] Master Lock type. This signal

Manish et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 216

provides additional
information about the
atomic characteristics of the
transfer.

AWCACHE[3:0] Master Cache type..
AWPROT[2:0] Master Protection type.

AWVALID Master

Write address valid. This
signal indicates that valid
write address and control
information are available:
1 = address and control
information available
0 = address and control
information not available.
The address and control
information remain stable
until the address
acknowledge signal,
AWREADY, goes HIGH.

WREADY Slave

Write address ready. This
signal indicates that the
slave is ready to accept an
address and associated
control signals: 1 = slave
ready, 0 = slave not ready

WID[3:0] Write Master

ID tag. This signal is the ID
tag of the write data
transfer. The WID value
must match the AWID value
of the write transaction.

WDATA[31:0] Master

Write data. The write data
bus can be 8, 16, 32, 64,
128, 256, 512, or 1024 bits
wide.

WSTRB[3:0] Master

Write strobes. This signal
indicates which byte lanes
to update in memory. There
is one write strobe for each
eight bits of the write data
bus.

WLAST Master
Write last. This signal
indicates the last transfer in
a write burst.

WVALID Master
Write valid. available:
.

III.SIMULATION AND SYNTHESIS RESULT

A. AXI decoder and Arbiter
Based on starting address issue by masters which

slave will going to interface with master determined by
Decoder the output shown in figure 2 . Also I have used
round robin algorithm for AXI which has rotating type
priority for masters shown in figure 3.

Figure 2 simulation result for AXI decoder

Figure 2 simulation result for AXI Arbiter

B. AXI slave for read and write address

For AXI design slave side arbitration multiple
request need only one starting address for read and write
operation which is the most important advantage of AXI
over AHB. So here by giving just starting address for
both read and write operation that can enable the multiple
outstanding transactions. The simulation r result for slave
for read address is shown in figure 4 and simulation result
for write address shown in 5.

Manish et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 217

Figure 4. simulation results for read address

Figure 4. simulation results for write address

C. AXI slave for multiple read & Write

Here the normal type of the burst is passed to module.
Internal_lock value is 0, internal_burst value is 1 and
internal_prot value is 1,for both read and write operations,
which indicate that the burst is of normal type. For write
operation address locations passed to module are 40, 12, 35,
42 and 102; for read operations 45, 12, 67 and 98.The
simulation output signals generated are From input side the
validating signals AWVALID/ARVALID signals are
generated by interconnect which gives the information about
valid address and ID tags .For write operations

RESP[1:0]response signal generated from slave indicates the
status of the write transaction. The allowable responses are
OKAY, EXOKAY, SLERR, and DECERR. For read
operations RLAST signal is raised by slave for every
transaction which indicates the completion of operation. The
simulation result for multiple read data for slave shown in
figure 6.

Figure 6.Simulation result for multiple read data for slave

D. Simulation result for write operation:

The AResetn signal is active low. All Master drives the
address, and the based on address slaves accepts it one cycle
later. The write address values for slaves passed to module are
shown in figure. Input AWID [3:0] value is 11 for 40 address
location, which is same as the BID [3:0] signal for 40 address
location which is identification tag of the write response. The
BID [3:0] value is matching with the AWID[3:0] value of the
write transaction which indicates the slave is responding
correctly. BRESP[1:0] signal that is write response signal
from slave is 0 which indicates OKAY. Simulation result of
slave for multiple write data operation is shown in figure 7.

Figure 7. Simulation result for multiple write data operation
for slave

Manish et al./ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 218

IV SYNTHESIS RESULT
First I would like introduce about Synthesis. Synthesis is a

nothing but the process of converting to high-level description
of design into gate-level representation. Logic synthesis uses a
standard cell library which have simple cells, such as basic
logic gates like and, or, and nor, or macro cells, such as adder,
multiplexers, memory block, and flip-flops/latches. Standard
cells put together are called technology library.

A. RTL schematic for AXI
Above all result shows the functional simulation results.

Now next step is synthesis of the AXI design. I have used
Xilinx 12.1 for the synthesis and for the implementation of
design. Below Figure shows the RTL schematic diagram for
the AMBA AXI design. Also synthesis report is shown in
Table 1.

Figure 5.15 RTL schematic for AMBA AXI

B. Device Utilization Summery for AXI

This section basically describes Number of flip-flops, Number
of LUTs, Number of registers used during Synthesis. This
design is synthesized using Xilinx 12.1 Software the value of
c lock signal during operation is 110.120 Mhz. I have used
Virtex-6 for the implementation purpose.

Slice Logic Utilization Used Available

Number of Slice Registers 128 93120

Number used as Flip Flops 87

Number used as Latches 41

Number of Slice LUTs 218 46560

Number used as logic 209 46560

Number used as Memory 0 16720

Number of occupied Slices 80 11640

Number of fully used LUT-FF pairs 99 1862

Number of bonded IOBs 69 240

V CONCLUSION
Depending upon the real time application these intellectual

properties can be used and design number of Masters and
Slaves that can be used in the work. The main goal of this
work is to design algorithms for arbiter which is useful to
granting the Master for multiple access to slave. The design of
decoder is also completed which is generating the select signal
for the slave. Also different operations of data transfer like
simple read and write for AHB as well as multiple read and
write operation using AXI.

REFRENCES

1). Anurag Shrivastava, G.S. Tomar and Ashutosh Kumar
Singh, “Performance Comparison of AMBA Bus-Based
System-On-Chip Communication Protocol” , 2011 IEEE, pp
449-454
2). Priyanka Gandhani, Charu Patel “Moving from AMBA
AHB to AXI Bus in SoC Designs: A Comparative Study “Int.
J Comp Sci. Emerging Tech Vol-2 No 4 August, 2011 pp 476-
479
3). Andrei R adulescu, John Dielissen, Santiago González
Pestana, Om Prakash Gangwal, Member, IEEE, Edwin
Rijpkema, Paul Wielage, and Kees Goossens “An Efficient
On-Chip NI Offering Guaranteed Services, Shared-Memory
Abstraction, and Flexible Network Configuration” IEEE
transactions on computer-aided design of integrated circuits
and systems, VOL. 24, NO. 1, JANUARY 2005
4). Ms.Usha A. Jadhav and prof.M.M Jadhav” A HIGH
THROUGHPUT AMBA AHB Protocol“International Journal
of Engineering Science and Technology Vol. 2(5), 2010,
1233-1241
5). Rishabh Singh Kurmi and Miss.Shruti Bhargava,
“Implementation of an AMBA Advanced High Performance
Bus protocol IP block”, International Journal of Electronics
Communication and Computer Engineering (IJECCE) vol.1
Issue.1 01/06/2011
6). Arm.amba axi protocol specification ARM.[online].
Available at http://www.arm.com

