
Sivaprakash/ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 187

Cloud Computing via Parallel Information
System supported by Harmonized Resource

Appropriation

P.Sivaprakash
#Computer Science and Engineering Department, RVS College of Engineering and Technology,

Coimbatore, Tamil Nadu,India
1sivaprakash04@gmail.com

Abstract— Ad hoc parallel data processing has emerged to be one
of the modest applications for Infrastructure-as-a-Service (IaaS)
clouds. For the large amount of submitting jobs the allocated
compute resources may be inadequate and this increases the
processing time and cost. This paper gives an overview about the
data processing framework, Batch Harmonizing Nephele
architecture explicitly exploits the dynamic resource allocation
that runs on clouds following IaaS abstraction for task
scheduling and execution. Thus here with prospects and
challenges for competent parallel data processing in cloud
reduces the time and cost. With this framework, we perform
extended evaluations of Map Reduce-inspired processing jobs on
an IaaS cloud system.

Keywords— IaaS, Nephele, Load balancing and Batch
harmonizing .

I. INTRODUCTION

A revolution is defined as a change in the way people think
and behave that is both dramatic in nature and broad in scope.
Thus in the present days, cloud computing is indeed a
revolution. Cloud computing is creating a fundamental change
in computer architecture, software and tools development, and
of course, in the way we store, distribute and consume
information.

End users access cloud-based applications through a
web browser or a light-weight desktop or mobile app while
the business software and user's data are stored on servers at a
remote location. Cloud computing entrusts services with a
user's data, software and computation over a network.
There are three types of cloud computing:
 Infrastructure as a Service (IaaS),
 Platform as a Service (PaaS), and
 Software as a Service (SaaS).

Compared to previous paradigms, cloud computing
focused on treating computational resources as measurable
and billable utilities. From the clients’ point of view, cloud
computing provides an abstraction of the underlying hardware
architecture. This abstraction saves them the costs of design,

setup and maintenance of a data centre to host their
Application Environments (AE). Whereas for cloud providers,
the arrangement yields an opportunity to profit by hosting
many AEs. This economy of scale provides benefits to both
parties, but leaves the providers in a position where they must
have an efficient and cost effective data center.

Here in this paper, Infrastructure as a Service (IaaS) is
been discussed deeper. Infrastructure as a Service (IaaS) cloud
computing focuses on providing a computing infrastructure
that leverages system virtualization to allow multiple Virtual
Machines (VM) to be consolidated on one Physical Machine
(PM) where VMs often represent components of AEs. VMs
are loosely coupled with the PM they are running on; as a
result, not only can a VM be started on any PM, but also, it
can be migrated to other PMs in the data center. Migrations
can either be accomplished by temporarily suspending the VM
and transferring it, or by means of a live migration in which
the VM is only stopped for a split second. With the current
technologies, migrations can be performed on the order of
seconds to minutes depending on the size and activity of the
VM to be migrated and the network bandwidth between the
two. The ability to migrate VMs makes it possible to
dynamically adjust data center utilization and tune the
resources allocated to AEs. Furthermore, these adjustments
can be automated through formally defined strategies in order
to continuously manage the resources in a data center with
less human intervention.

.

II. RELATED WORKS

In recent years a variety of systems to facilitate MTC
has been developed. Although these systems typically share
common goals (e.g. to hide issues of parallelism or fault
tolerance), they aim at different fields of application. Map
Reduce [2] (or the open source version Hadoop [3]) is
designed to run data analysis jobs on a large amount of data,
which is expected to be stored across a large set of share-
nothing commodity servers. Map Reduce is highlighted by its
simplicity: Once a user has fit his program into the required

Sivaprakash/ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 188

map and reduce pattern, the execution framework takes care
of splitting the job into subtasks, distributing and executing
them. A single Map Reduce job always consists of a distinct
map and reduce program. However, several systems have
been introduced to coordinate the execution of a sequence of
Map Reduce jobs [4], [5]. Map Reduce has been clearly
designed for large static clusters. Although it can deal with
sporadic node failures, the available compute resources are
essentially considered to be a fixed set of homogeneous
machines.

The Pegasus framework by Deelman [6] has been
designed for mapping complex scientific workflows onto grid
systems. Similar to Nephele, Pegasus lets its users describe
their jobs as a DAG with vertices representing the tasks to be
processed and edges representing the dependencies between
them. The created workflows remain abstract until Pegasus
creates the mapping between the given tasks and the concrete
compute resources available at runtime. The authors
incorporate interesting aspects like the scheduling horizon
which determines at what point in time a task of the overall
processing job should apply for a compute resource. This is
related to the stage concept in Nephele. However, Nephele’s
stage concept is designed to minimize the number of allocated
instances in the cloud and clearly focuses on reducing cost. In
contrast, Pegasus’ scheduling horizon is used to deal with
unexpected changes in the execution environment. Pegasus
uses DAGMan and Condor-G [7] as its execution engine. As a
result, different task can only exchange data via files.

Thao introduced the Swift [8] system to reduce the
management issues which occur when a job involving
numerous tasks has to be executed on a large, possibly
unstructured, set of data. Building upon components like CoG
Karajan [9], Falkon [10], and Globus [11], the authors present
a scripting language which allows to create mappings between
logical and physical data structures and to conveniently assign
tasks to these. The system our approach probably shares most
similarities with is Dryad [12]. Dryad also runs DAG-based
jobs and offers to connect the involved tasks through file,
network, or in-memory channels. However, it assumes an
execution environment which consists of a fixed set of
homogeneous worker nodes. The Dryad scheduler is designed
to distribute tasks across the available compute nodes in a way
that optimizes the throughput of the overall cluster. It does not
include the notion of processing cost for particular jobs.

In terms of on-demand resource providing
several ̈projects arose recently: Dornemann [13] presented an
approach to handle peak-load situations in BPEL workflows
using Amazon EC2. Ramakrishnan [14] discussed how to
provide a uniform resource abstraction over grid and cloud
resources for scientific workflows.

Both projects rather aim at batch-driven workflows than the
data-intensive, pipelined workflows Nephele focuses on. The
FOS project [15] recently presented an operating system for
multicore and clouds which is also capable of on-demand VM
allocation.

III. PROBLEM STATEMENT

A cloud computing facility (data center) which is
composed of a number of clusters is considered. This cloud
computing environment has a central manager that has some
information about all clusters as well as the clients. Clusters
are characterized by the number and type of computing, data
storage, and communication resources that they control.

The IaaS cloud providers integrate the processing
framework to reduce the processing time and provide
simplicity to the users. Reducing process time leads to
reduction in the cost for attracting the users to use their cloud
services. Several frameworks have been developed with some
specific features (e.g. to reduce cost or increase performance)
for cloud which reduce the complexities for the user. However,
the existing well known frameworks like Google’s Map
Reduce, Yahoo’s Map Reduce Merge need the job to be
written in a distinct map and reduce program by the developer.
Map Reduce is very rigid, forcing every computation to be
structured as a sequence of map-reduce pairs. Nephele
framework introduces some basic issues for Dynamic
allocation of instances.

The existing Nephele framework has some
difficulties with the resource overload and underutilization
problems during job execution. And also Nephele needs more
user annotations to execute the tasks.

IV. OVERVIEW OF BATCH HARMONIZING NEPHEL
FRAMEWORK

Proposed framework shadows most of the existing
Framework Nepheles functionality. This framework differs by
including the resource monitor to check the availability of
resource to avoid starvation by using a checker and resource
manager to schedule the allocation and de-allocation in the
Nephele Framework to accomplish load balancing
automatically during job execution.

A. Architecture

Batch harmonizing framework follows a standard master-
worker pattern to process the given sequential code in the IaaS
cloud. The batch harmonizing framework describes the master
node (i.e. VM) as Job Manager (JM) which is taking place
before submitting the job to execute. The Job Manager, takes
the clients’ jobs, is responsible for scheduling them and
coordinates their execution. It is capable of communicating
with the Cloud Controller interface which the cloud operator
offers to control the instantiation of VMs. By means of the
Cloud Controller the Job Manager can allocate or deal locate
VMs rendering to the current job execution phase. VMs are
denoted by instances as per the common cloud computing
terminology. The term instance type will be used to
differentiate between VMs with different hardware
characteristics. For example, the instance type “small

Sivaprakash/ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 189

instance” could denote VMs with one CPU core, 1.7 GB of
RAM, and a 160 GB disk while the instance type “Extra-
large” could refer to machines with 8 CPU cores, 16 GB RAM
and a 1690 GB disk. The executions of tasks are carried out by
a set of in-stances called Task Managers (TM). These worker
nodes receive one or more task from the Job Manager at a
time, execute them, and after that, inform the Job Manager
about their completion or possible errors. JM allocates the
subtasks to the TM conferring to the type and size of the job.
The newly allocated instances boot up with a previously
compiled VM image. The image is configured to
automatically start a Task Manager and register it with the Job
Manager. Once all the necessary Task Managers have
successfully contacted the Job Manager, it triggers the
execution of the scheduled job. Resource monitor is used to
standardize the amount of sub-tasks being distributed to each
instance (VMs) by using the Resource Manager. Resource
Manager is the responsible for reallocating the subtasks to the
instances according to the execution phase. The starvation
checker will check that none of the job waits without the
resource. Job execution with take place according to the
multilevel feedback queue process by highest priority of jobs
in the queue allocated for each resource. The jobs with move
in the queue level according to the priority. Thus the job
completion will be soon and de-allocation resource is been
intimated by resource monitor.

Fig.1 Structural overview of Batch Harmonizing Nephele Framework in an
Infrastructure-as-a-Service (IaaS) cloud

B. Job Description

The job of the batch harmonizing Nephele
Framework is articulated as a directed acyclic graph (DAG)
which agrees tasks to have multiple inputs and output gates.
Each vertex in the graph signifies a task of the overall
processing job; the graph’s edges define the communication
flow between these tasks.

Defining a batch harmonizing Nephele job comprises
three mandatory steps:

First, the user must write the program code for each
task of his processing job or select it from an external library.
Second, the task program must be assigned to a vertex. Finally,
the vertices must be connected by edges to define the
communication paths of the job.

The user has to submit the job as the DAG graph
which specifies the tasks as the vertices and communication
flow as the edges. This DAG graph is called as the Job Graph
in the Extended Nephele framework. Users should be able to
describe the tasks and the relationships on the abstract level.

Fig. 2. shows the simplest Job graph which involves
one input, one task and one output vertex. For generating the
job graph user must have some ideas about traits like number
of subtasks, number of subtasks per instances, sharing
instances between tasks, channel types and instance types for

Sivaprakash/ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 190

job descriptions. Once the Job Graph is specified, the user
submits it to the Job Manager together with the authorizations
which the user has obtained from the cloud operator. The
authorizations are required since the Job Manager must
allocate/deallocate instances during the job execution.

Fig. 2. An example of Job Graph.

C. Job Scheduling and Execution

After receiving the valid Job Graph the JM renovates
it into the Execution Graph which is the primary data structure
for scheduling and monitoring the execution of the Batch
Harmonizing Nephele job. It contains all the existing
information required to schedule and execute the tasks in the
cloud. Fig. 3. shows the Execution Graph for the given Job
Graph (i.e, Fig. 2.). Here Task 1 is, e.g., Split into two parallel
subtasks which are both connected to the task Output 1 using
file channels and are all scheduled to run on the same instance.

The Basic Execution Graph structure is no longer a pure
DAG. It resembles in two different levels of details, an
abstract level and a concrete level. On the abstract level, the
Execution Graph equals the user’s Job Graph. In the concrete
level more fine-grained graph defines the mapping of subtasks
to instances and the communication channels between them.
Execution Graph consists of a Group Vertex for every vertex
in Job Graph represent distinct tasks of the overall job.
Execution stages are used to avoid the instance type
availability problems in the cloud. Subtasks are represented in
the Execution graph called Execution vertex which is
controlled by its corresponding Group vertex. Each subtask is
mapped to an Execution Instance which is defined by an ID
and an instance type representing the hardware characteristics
of the corresponding VM. After submitting the job to the JM,
it divides the job into subtasks and schedules them into a
number of Task managers according to the number of subtasks.
These subtasks are given to the TM using the any type of
channel according to the type of the job. The channel may be
network, file or in-memory channel.

Fig. 3. An Execution Graph created from the original Job Graph.

D. Load Balancing

After the execution starts the TM must be monitored
for providing better performance. While executing if any of
the instances execute more tasks compared to others it may
cause resource overload problem. Or at the same time any of
the instances are process below the normal processing range it
cause underutilization problem. These two problems take
effect in the billing charges. To overcome this inside the IaaS
cloud there must be a resource monitor check the TM and has
to load balance the resource. This can be done by using user
notification or by the job manager has to allocate/deal locate
resource according to the memory used in the instances. The
framework does a runtime based analysis and monitoring of
the utilization of the allocated resources by the task that
performs parallel computation with randomized version of
multilevel feedback queue scheduling and solves the
discrepancies (overutilization of underutilization of the
allocated resources) and does the corresponding actions like
allocating or de-allocating the needed resource and also avoids
starvation of resources and thus saving the cost of
computation involved in the task thereby reducing the time
consumed and also the capital expenditure consumed.

E. Conclusion

In this paper we proposed a parallel processing frame-
work Batch Harmonizing Nephele which avoids the resource
overload and underutilization during job execution and
performed a word count application based on this framework
presented a performance comparison to the Nephele
framework and establish out as a significant methodology for
using the allocated resources efficiently without wasting the

Sivaprakash/ IJAIR Vol. 2 Issue 6 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 191

resource thereby reducing the cost involved in the
computation task. A Scheduling algorithm has been
implemented to reduce more time.

ACKNOWLEDGMENT

I would like to thank my guide Prof.J.Jayavel working as
Assistant Professor in Information Technology Department at
Anna University, Regional Centre, Coimbatore, Tamil Nadu
for his continuous support and guidance.

REFERENCES

[1]Daniel Warneke and Odej Kao Exploiting Dynamic Resource Allocation
for Efficient Parallel Data Processing in the Cloud. In ieee transactions
on parallel and distributed systems, January 2011.

[2]J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation, pages 10–
10, Berkeley, CA, USA, 2004. USENIX Association.

[3]The Apache Software Foundation. Welcome to Hadoop!
http://hadoop.apache.org/, 2009.

[4]R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the Data:
Parallel Analysis with Sawzall. Sci. Program., 13(4):277– 298, 2005.

[5]C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin:
A Not-So-Foreign Language for Data Processing. In SIGMOD ’08:
Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 1099–1110, New York, NY, USA, 2008.
ACM.

[6]E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G.
Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D.
S. Katz. Pegasus: A Framework for Mapping Complex Scientific
Workflows onto Distributed Systems. Sci. Program.,13(3):219–237,
2005.

[7]J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G: A
Computation Management Agent for Multi-Institutional Grids. Cluster
Computing, 5(3):237–246, 2002.

[8]Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski,V.
Nefedova, I. Raicu, T. Stef-Praun, and M. Wilde. Swift: Fast, Reliable,
Loosely Coupled Parallel Computation. In Services, 2007 IEEE
Congress on, pages 199–206, July 2007.

[9]G. von Laszewski, M. Hategan, and D. Kodeboyina. Workflows for e-
Science Scientific Workflows for Grids. Springer, 2007.

[10]I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde. Falkon: a Fast
and Light-weight tasK executiON framework. In SC ’07: Proceedings of
the 2007 ACM/IEEE conference on Supercomputing, pages 1–12, New
York, NY, USA, 2007. ACM.

[11]I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure
Toolkit. Intl. Journal of Supercomputer Applications, 11(2):115–128,
1997.

[12]M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
Data-Parallel Programs from Sequential Building Blocks. In EuroSys
’07: Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, pages 59–72, New York, NY,
USA, 2007. ACM.

[13]T. Dornemann, E. Juhnke, and B. Freisleben. On-Demand Resource
Provisioning for BPEL Workflows Using Amazon’s Elastic Compute

Cloud. In CCGRID ’09: Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, pages
140–147, Washington, DC, USA, 2009. IEEE Computer Society.

[14]L. Ramakrishnan, C. Koelbel, Y.-S. Kee, R. Wolski, D. Nurmi, D.
Gannon, G. Obertelli, A. YarKhan, A. Mandal, T. M. Huang, K.
Thyagaraja, and D. Zagorodnov. VGrADS: Enabling e-Science
Workflows on Grids and Clouds with Fault Tolerance. In SC ’09:
Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, pages 1–12, New York, NY, USA,
2009. ACM.

[15]D. Wentzlaff, C. G. III, N. Beckmann, K. Modzelewski, A. Belay, L.
Youseff, J. Miller, and A. Agarwal. An Operating System for Multicore
and Clouds: Mechanisms and Implementation. In SoCC ’10:
Proceedings of the ACM Symposium on Cloud Computing 2010, pages
3–14, New York, NY, USA, 2010. ACM.

