
1

Analysis of a PA-UDP Flow Control Protocol for
High Speed Data Transfer
R.Srinivasa Rao #1, G.Nageswara Rao*2

1# M.Tech Scholar
Department of IT ,

AITAM College,Tekkali
Srikakulam District - 532 201.

Andhra Pradesh, India

2*Head of the Department
Department of IT ,

AITAM College,Tekkali
Srikakulam District - 532 201.

Andhra Pradesh, India

Abstract

High speed bulk data transfer is an
important part of many data-intensive scientific
applications. TCP fails for the transfer of large
amounts of data over long distance across high-
speed dedicated network links. Due to system
hardware is incapable of saturating the
bandwidths supported by the network and rise
buffer overflow and packet-loss in the system. To
overcome this there is a necessity to build a
Performance Adaptive-UDP (PA-UDP) protocol
for dynamically maximizing the implementation
under different systems. A mathematical model
and algorithms are used for effective buffer and
CPU management. Performance Adaptive-UDP
is a supreme protocol than other protocols by
maintaining memory processing, packet loss
processing and CPU utilization. Based on this
protocol bulk data transfer is processed with high
speed over the dedicated network links

Keywords: Flow control, high-speed protocol,
reliable UDP, bulk transfer

1. Introduction

Transmission Control Protocol (TCP) has
been used effectively for decades but in the later
periods TCP has some shortcomings over wide area
high-speed networks. The first shortcoming is
Additive Increase Multiplicative Decrease
Algorithm (AIMD) congestion control algorithm [1]
is poor in discovering available bandwidth and
recovering packet loss from high bandwidth-delay
product networks. In this AIMD algorithm,
bandwidths are distributed equally among the
current participants in network and use a congestion
control mechanism based on packet loss.
Throughput is halved in the resence of detected
packet loss and only additively increased during
subsequence loss- free transfer. The second
shortcoming of TCP is its congestion window. To
ensure sequential delivery both receiver and sender
maintains a congestion window for complete size of
the buffer. Sender sends a burst of packets and then
receiver send back positive acknowledgements in
order to receive the next window. Using the
throughput time and logic, the sender decides the
packets loss in the window and retransmits them to
the receiver. On the contrary network with high-
latencies, reliance on synchronous communication
can severely arrest any attempt for high-bandwidth
utilization because the protocol relies on latency-
bound communication.

The first shortcoming is that TCP was
made to distribute bandwidth equally among the

2

current participants in a network and uses a
congestion control mechanism based on packet loss.
Throughput is halved in the presence of detected
packet loss and only additively increased during
subsequent loss-free transfer. This is the so-called
Additive Increase Multiplicative Decrease algorithm
(AIMD) [1]. If packet loss is a good indicator of
network congestion, then transfer rates will
converge to an equal distribution among the users of
the network. In a dedicated link, however, packet
loss due to congestion can be avoided. The
partitioning of bandwidth, therefore, can be done via
some other, more intelligent bandwidth scheduling
process, leading to more precise throughput and
higher link utilization. Examples of advanced
bandwidth scheduling systems include the
centralized control plane of USNand Generalized
Multiple Protocol Label Switching (GMPLS) for
DRAGON [2], [3]. On a related note, there is no
need for TCP’s slow-start mechanism because
dedicated links with automatic bandwidth
partitioning remove the risk of a new connection
overloading the network. For more information, see
[4].

The goal of our work is to present a protocol
that can maximally utilize the bandwidth of these
private links through a novel performance-based
system flow control. As Multigigabit speeds become
more pervasive in dedicated LANs and WANs and
as hard drives remain relatively stagnant in read and
write speeds, it becomes increasingly important to
address these issues inside of the data transfer
protocol. We demonstrate a mathematical basis for
the control algorithms we use, and we implement
and benchmark our method against other commonly
used applications and protocols. A new protocol is
necessary, unfortunately, due to the fact that the de
facto standard of network communication, TCP, has
been found to be unsuitable for high-speed bulk
transfer. It is difficult to configure TCP to saturate
the bandwidth of these links due to several
assumptions made during its creation.

2. High Speed Reliable UDP

High-speed Reliable UDP protocols
include SABUL/UDT [5], [6], RBUDP [7], Tsunami
[8], and Hurricane [9], among others [10].High-
speed Reliable UDP Protocols used for bulk data

transfer and TCP is used to transfer the control data.
Most high-speed reliable UDP protocols use delay
based rate control to remove the need for congestion
windows. This control scheme allows a host to
statically set the rate and open the throughput-
limiting stair step effects of AIMD. In addition,
consistent delivery is ensured with delayed, selective
or negative acknowledgements of packets. Negative
acknowledgements are optimal in cases where
packet loss is minimal. If there is little loss,
acknowledging only lost packets will gain least
amount of synchronous communication between the
hosts. Let us consider one high-speed reliable UDP
is RBUDP. Describes an aggressive bulk data
transfer scheme, called Reliable Blast UDP
(RBUDP), intended for extremely high and width,
dedicated- or Quality-of-Service- enabled networks,
such as visually switched networks.

A. Reliable blast UDP

Reliable Blast UDP has two goals. The
first is to keep the network pipe as full as possible
during bulk data transfer. The second goal is to
avoid TCP’s per-packet interaction so that
acknowledgments are not sent per window of
transmitted data, but aggregated and delivered at the
end of a transmission phase. The RBUDP data
delivery scheme illustrates the first data
transmission phase (A to B in the figure); RBUDP
sends the entire payload at a user-specified sending
rate using UDP datagrams. Since UDP is an
unreliable protocol, some datagrams may become
lost due to congestion or inability of the receiving
host from reading the packets rapidly enough. The
receiver therefore must keep a tally of the packets
that are received in order to determine which packets
must be retransmitted. At the end of the bulk data
transmission phase, the sender sends a DONE
signal via TCP (C in the figure) so that the receiver
knows that no more UDP packets will arrive.

The receiver responds by sending an
Acknowledgment consisting of a bitmap tally of the
received packets (D in the figure). The sender
responds by resending the missing packets, and the
process repeats itself until no more packets need to
be retransmitted. In RBUDP, the most important
input parameter is the sending rate of the UDP
blasts. To minimize loss, the sending rate should not
be larger than the bandwidth of the bottleneck link

3

(typically a router). Tools such as Iperf [Iperf] and
netperf [Netperf] are typically used to measure the
bottleneck Bandwidth. In theory if one could send
data just below this rate, data loss should be near
zero. The chief problem with using Iperf as a
measure of possible throughput over a link is that it
does not take into account the fact that in a real
application, data is not simply streamed to a receiver
and discarded. It has to be moved into main memory
for the application to use.

Figure 2.1 The Time Sequence Diagram of RBUDP

Three versions of RBUDP were developed:

1. RBUDP without scatter/gather
optimization –

This is a native implementation of RBUDP
where each incoming packet is examined (to
determine where it should go in the application’s
memory buffer) and then moved there.

2. RBUDP with scatter/gather optimization –
This implementation takes advantage of

the fact that most incoming packets are likely to
arrive in order, and if transmission rates are below
the maximum throughput of the network, packets are
unlikely to be lost. The algorithm works by using
readv() to directly move the data from kernel
memory to its predicted location in the application’s
memory. After performing this readv) the packet
header is examined to determine if it was placed in
the correct location. If it was not (either because it
was an out-of-order packet, or an intermediate

packet was lost), then the packet is moved to the
correct location in the user’s memory buffer.

3. “Fake” RBUDP – This implementation is the
same as the scheme without the scatter/gather
optimization except the incoming data is never
moved to application memory. This was used to
examine the overhead of the RBUDP protocol
compared to raw transmission of UDP packets via
Iperf.

A. Tsunami Protocol
Our initial implementation of the Tsunami

protocol consists of two user-space applications, a
client and a server. The structure of these
applications are illustrated as, during a file transfer,
the client has two running threads.

The network thread handles all network
communication, maintains the retransmission queue,
and places blocks that are ready for disk storage
into a ring buffer. The disk thread simply moves
blocks from the ring buffer to the destination file on
disk. The server creates a single thread in response
to each client connection that handles all disk and
network activity The client initiates a Tsunami
session by connecting to the TCP port of the server.
Upon connection, the server sends a small block of
random data to the client. The client then xor’s this
random data with a shared secret, calculates an MD5
checksum, and transmits the result to the server. The
server performs the same operation on the random

4

data and verifies that the results are identical thus
establish client authentication. After exchanging
protocol revision codes, the client sends the name of
the requested file to the server. If the server indicates
that the file is available, the client sends its desired
block size, target transfer rate, error threshold, and
inters- packet delay scaling factors. The server
responds with the length of the file, the agreed-upon
block size, the number of block, and a timestamp.
The client then creates a UDP port and transmits the
port number. At this point, transmit of the file from
server to client is ready. Finally, reliable UDP is
positioned at the application level; this allows users
to explore more customized approaches to suit the
type of transfer, whether it is disk-to-disk, memory-
to-disk, or any other dedicated combination.

3. Mathematical Model for Measuring
High-Speed Networks

A mathematical model is used to
determine the changes in system parameters in
High-Speed performances. This will be performed
by buffer sizes to network rates and sending rates to
inter packet delay times. Receiver is very much
significant because the receiver is noticed to be in
more system strain than the sender. Two buffers are
of primary importance in preventing packet loss at
the receiving end: the kernel’s UDP buffer and the
user buffer at the application level.

A. Receiving Application Buffers

For the protocols which receive packets
and write to disk asynchronously, the time before
the receiver has a full application buffer can be
calculated with a simple formula Let “t” be the time
in seconds, r (.) be a function which returns the data
rate in bits per second (bps) of its argument, and m
be the buffer size in bits. The time before m is full is
given by

t = m / r (recv) – r (disk)

To circumvent this problem, one may put
a restriction on the size of the file sent by relating
file size to r (recv)*t. Let “f” be the size of a file
and “fmax” be its maximum size:

fmax = m / 1 – r (disk)/r(recv)

Note that fmax can never be negative since r (disk)
can only be as fast as r (recv). Also, note that if the
two rates are equally matched, fmax will be infinite
since the application buffer will never overflow.

B. Receiving Kernel Buffers
Another source of packet loss occurs when

the kernel’s receiving buffer fills up. Since UDP was
not designed for anything approximating reliable
bulk transfer, the default buffer size for UDP on
most operating systems is very small.

t = m/ r (recv)

Let t% represent the percentage of time during
execution that the application is actively receiving
packets and r (CPU) be the rate at which the CPU
can process packets:

t% >= r (recv)/r (CPU)

4. Implementation of PA-UDP
PA-UDP is the protocol mostly used in

Linux and UNIX environments, this is a
multithreaded designed to be self- configuring with
minimal human input.

A. Data Flow and Structures

The implementation of the both sender
and receiver is accessed as; the sender sends data
asynchronously through UDP socket. Periodically
probing the TCP socket is used for control and
retransmission requests. A buffer is maintained to
both sender and receiver. So, the sender does not
have to reread the retransmitted packet from disk.

When the data are generated, a buffer
might be crucial to the integrity of the received data
if data are taken from sensors or other such no
reproducible events. At the receiver end, there are
six threads. Threads serve to provide easily
achievable parallelism, crucially hiding latencies
(measure of time delay in system). Furthermore, the
use of threading to achieve periodicity of

5

independent functions simplifies the system code.
The File processing thread ensures that the data are
in the correct order once the transfer is over.

Figure 4.1 PA-UDP: the data sender

The Recv thread is very sensitive to CPU
scheduling latency, and thus, should be given high
scheduling priority to prevent packet loss from
kernel buffer overflows. The PA-UDP protocol
handles only a single client at a time, putting the
others in a wait queue. Thus, the threads are not
shared among multiple connections. Since, the
maximum goal is to utilization of link over a private
network.

Figure 4.2 PA-UDP: the data receiver

The Recv thread is very sensitive to CPU
scheduling latency, and thus, should be given high
scheduling priority to prevent packet loss from
kernel buffer overflows. The PA-UDP protocol
handles only a single client at a time, putting the
others in a wait queue. Thus, the threads are not
shared among multiple connections. Since, the
maximum goal is to utilization of link over a private
network.

C. Disk Activity

The disk write thread is very important from a
performance standpoint. Writing is done
synchronously with the kernel. File streams are
default to being buffered, but in our case, this can
have unpleasant effects on CPU latencies. Normally,
the kernel allocates as much space as necessary in
unused RAM to allow for fast returns on disk
writing operations. The RAM buffer is then
asynchronously written to disk, depending on
algorithms used, write through, or write- back.

No problem to take care if a system call is
to write to disk halts thread activity, because disk
activity is decoupled from data reception and halting
will not affect the rate at which packets are received.
Thus, it is not relevant that a buffer be kept in
unused RAM. If the transfer is large enough,
eventually, this will cause a premature coloring of
the kernel’s disk buffer, which can introduce
unacceptably high latencies across all threads. We
found this to be the cause of many dropped packets
even for file transfers having sizes less than the
application buffers. Two parallel threads are used to
write to disk. Since part of the disk thread’s job is to
hold data together and do memory management,
better efficiency can be achieved by having one
thread do memory management, while the
other is blocked by the hard disk and vice versa. A
Single- threaded solution would introduce a delay
during memory management. Parallel disk threads
remove this delay because execution is effectively
pipelined. So, by adding of second thread
appreciably augmented disk performance is reliable.
Since data may be written out of order due to packet
loss, it is necessary to have a reordering algorithm
works on putting the file in its proper order.

5. Conclusion
UDP-based protocols are often used in

data intensive applications for bulk data transfer.
However, it is difficult to implement a new protocol
in a fast and efficient way. By introducing a
performance adaptive- UDP high speed bulk data
transfer is processed between the dedicated network
links and this is observed by the mathematical
measurements on implementing them on Linux. So,
the PA- UDP is consistent than other protocols in
CPU utilization efficiency.

6

6. References

[1] S. Floyd, “RFC 2914: Congestion Control Principles,”
Category: Best Current Practise, ftp://ftp.isi.edu/in-
notes/rfc2914.txt, Sept. 2000.

[2] N.S.V. Rao, Q. Wu, S. Ding, S.M. Carter, W.R. Wing,
A. Banerjee, D. Ghosal, and B. Mukherjee, “Control Plane
for Advance Bandwidth Scheduling in Ultra High-Speed
Networks,” Proc. IEEE INFOCOM, 2006.

[3] N. Rao, W. Wing, Q. Wu, N. Ghani, Q. Liu, T.
Lehman, C. Guok, and E. Dart, “Measurements on Hybrid
Dedicated Bandwidth Connections,” Proc. High-Speed
Networks Workshop, pp. 41-45, May 2007.

[4] K. Wehrle, F. Pahlke, H. Ritter, D. Muller, and M.
Bechler, Linux Network Architecture. Prentice-Hall, Inc.,
2004.

[5] R.L. Grossman, M. Mazzucco, H. Sivakumar, Y. Pan,
and Q. Zhang, “Simple Available Bandwidth Utilization
Library for High-Speed Wide Area Networks,” J.
Supercomputing, vol. 34, no. 3, pp. 231-242, 2005.

[6] Y. Gu and R.L. rossman, “UDT: UDP-Based Data
Transfer for High-Speed Wide Area Networks,” Computer
Networks, vol. 51, no. 7, pp. 1777-1799, 2007.

[7] E. He, J. Leigh, O.T. Yu, and T.A. DeFanti, “Reliable
Blast UDP: Predictable High Performance Bulk Data
Transfer,” Proc. IEEE Int’l Conf. Cluster Computing, pp.
317-324, http://csdl.computer.org/, 2002.

[8] M. Meiss, “Tsunami: A High-Speed Rate-Controlled
Protocol for File Transfer,”
www.evl.uic.edu/eric/atp/TSUNAMI.pdf/, 2009.

[9] N.S.V. Rao, Q. Wu, S.M. Carter, and W.R. Wing,
“High-Speed Dedicated Channels and Experimental
Results with Hurricane Protocol,” Annals of Telecomm.,
vol. 61, nos. 1/2, pp. 21-45, 2006.

[10] M. Goutelle, Y. Gu, and E. He, “A Survey of
Transport Protocols Other than Standard tcp,”
citeseer.ist.psu.edu/he05survey.html, 2004.

7. About the Authors

R.Srinivasa Rao is
currently pursuing his
M.Tech in Information
Technology at
AITAM College
Tekkali, Srikakulam
District. He is currently
working as Marketing
Head Cum Manager in
Millennium Software

Solutions Visakhapatnam. His area of interests
includes Networks, Security.

Prof. G. NageswaraRao
is currently working as a
Head of Department of
Information Technology
AITAM College
Tekkali, Srikakulam
District. His research
interests include
Compiler Design,
MFCS, Bio-Informatics,

Formal Languages and Automata Theory

