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Abstract—Proper installation of flexible ac transmission 

systems (FACTS) in existing transmission networks can 

improve transmission system loading margin (LM) to a 

certain degree and reduce network expansion cost. In this 

paper, Particle Swarm Optimization (PSO) is used to 

determine which buses need static var compensator (SVC) 

installation. Maximum LM and minimum SVC 

installation cost composed into the multi-objective 

function the optimal LM enhancement problem is 

formulated as a multi-objective optimization problem 

(MOP) and solved by using the fitness sharing multi-

objective particle swarm optimization (MOPSO) 

algorithm. The proposed method is validated on the IEEE 

30-bus power system. 

 

Index Terms— Continuation power flow, loading margin, 

static voltage stability. 

 

I.INTRODUCTION 

 

UNDER urgency to diminish the harms from environmental 

deterioration, one of the recently focused a research in the 

power industry is to make the existing transmission networks 

sufficiently utilize their capability in power transfer [1]–[3]. 

Through detailed studies, voltage instability was found to be 

the main factor responsible for several blackout events in the 

recent years [4]. As an index to indicate the level of static 

voltage stability of a transmission system, the loading margin 

(LM) or voltage stability margin (VSM), representing the 

maximum power that can be transferred between generators 

and loads before voltage collapse point achieved is generally 

measured in system planning [5], [6]. The optimal flexible ac 

transmission systems (FACTS) installation had been 

researched and discussed widely and several strategies were 

proposed. In general, the studies are oriented towards 

technical, economic, or both concerns. In technical concerns, 

the method proposed in [3] practically installed different types 

of FACTS devices on different locations to identify the 

increase of LM. While in [7], a two-stage SVC installation 

method is proposed. In stage one, LM is increased on a step-

by-step basis and, in each step, to provide sufficient reactive 

power from an SVC installation, the location and its capacity 

are determined by using a genetic algorithm (GA), and, in 

stage two, under different contingencies the control signals to 

the SVC installation are determined based on various stability 

indices. The method proposed in [8] used GA to determine the 

locations and capacities for the respective installations of 

various types of FACTS devices for LM enhancement. While 

in [9], modal analysis (MA) technique and a guaranteed 

convergence particle swarm optimization (GCPSO) algorithm 

are used to determine the locations for SVC installation and 

the capacities to enhance LM. With the compensation of SVC, 

TCSC, and UPFC installations, in [10], the singular 

value/eigenvalue decomposition analysis of the load-flow 

Jacobian and the controllability characteristics of an 

equivalent state model are used to study the voltage instability 

phenomenon as well as to assess the potential for small-signal 

voltage stability improvement. Considering N_1 

contingencies, in [11], tangent vector technique and reactive 

power sensitivity index were adopted as reference indices to 

point out the locations suitable for installations of the parallel 

and series FACTS devices. As specific contingencies are 

identified to be the main factors that result in voltage 

instability, [12] expressed N_1 line outages with stochastic 

model and used MA to expect the total participation in all 

critical modes (TPCM) index value for each bus. The bus with 

the biggest TPCM index value is selected for a STATCOM 

installation. On the other hand, in economic concerns, the total 

FACTS installation and generation costs were taken as the 

objective function in [13] and [14], and GA was used to make 

the decision where to install FACTS devices. The method 

proposed in [15], comprised of the tabu search (TS) and a 

nonlinear programming method, was used to optimize the 

FACTS devices investment and recovery. While the method 

developed in [16] with the proposed performance indices of 

real power flows was used to seek the optimal locations for 

FACTS installation.                                      

        Under the existing FACTS devices installed, in [17], the 

minimum generation  cost-based OPF was solved using the 

proposed hybrid of TS and simulated annealing (SA) 

algorithm. While in [18], an optimal approach comprised of 

CPF and OPF techniques for UPFC installation was proposed 

to minimize the total generation and installation cost Dealing 

with both concerns simultaneously in the LM enhancement 

problem for deriving optimal FACTS installation, in [19], the 

proposed method linearly composed voltage security, system 
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loss, capacities for STATCOM installation and LM into a 

single-objective function, which was solved by using a PSO 

algorithm. While in [20] and [21], a single objective function 

was linearly composed of the installation costs for various 

types of FACTS devices (UPFC, TCSC, and SVC), system 

securities, loss and voltage stability indices. The problem was 

solved by PSO in [20] and GA in [21]. Besides, to possibly 

reveal the variety of solutions, the optimal SVC installation 

problem for LM enhancement is formulated as an MOP. 

Reference [22] applied a multi-objective genetic algorithm 

(MOGA) to the combinatorial optimization problem with the 

multi-objective function composed of minimum FACTS 

installation cost and allowable system security limits. The 

results obtained to release the threats from low voltage and 

line congestion include the types of FACTS devices used, the 

installation locations and capacities. While in [23], the 

minimum generation costs and allowable system security 

limits are involved in the multi-objective function, and a 

bacterial swarming algorithm (BSA) is used to determine the 

installation locations and capacities for various types of 

FACTS devices (TCSC, TCPST, TCVR, SVC). The method 

proposed in [24] composed maximum LM, minimum system 

loss and voltage deviations at PQ buses into the multi-

objective function, and an MOPSO method was used to solve 

for the locations and capacities for one SVC and one TCSC 

installations. From previous reviews, a FACTS installation 

problem can adopt linearization approaches, or methods with 

more flexibility including heuristic models and evolutional 

algorithms. In the paper, PSO technique is used to determine 

which buses need SVC installation, and the LM enhancement 

problem to determine the capacity of each SVC installation 

and generation pattern [6] is formulated as an MOP with 

maximum LM and minimum SVC installation cost involved 

in the multi-objective function. The fitness sharing MOPSO 

algorithm is used here.  

 

II. PROBLEM FORMULATION 

 

A. Multi-Objective Optimization Problems 

 

When trying to solve an MOP, not only trying to look for one 

single solution but a set of trade-off solutions is the target of 

the solution algorithm and the one that will be chosen will 

depend on the needs of the decision maker. An MOP can be 

defined as 

Min   

S.t         (1) 

         

 

                                          Bus-i 

 

 
Fig. 1. PQ bus with an SVC installation. 

where multi-objective function includes  objective 

functions, constraints and  are equality and 

inequality functions, and is control variables. In order to 

optimize the vector function, the concepts tied to an 

MOP called “domination” and “non domination” are defined 

as [25]: 1) Solution  is said to dominate solution , if and 

only if is not worse than  in all objectives and  is 

strictly better than  in at least one objective. 2) Among a set 

of solutions  , the non dominated set of solutions  are those 

that are not dominated by any member of the set   . If within 

the definition the set of solution  is replaced by the feasible 

search space  , then the set of solutions in  will be 

what is called Pareto-optimal set or Pareto front. 

 

B. Problem Formulation for Loading Margin Enhancement 

 

Let Qci be a regulable reactive power provided by the SVC at 

bus  and its range is set to: -QC ≤ Qci ≤ QC .Fig. 1 shows the 

equivalent injection for a PQ bus with an SVC installation. 

Employing CPF technique to formulate the LM enhancement 

problem and letting λ, λ , be the loading factor, λ = 0 for 

base load, the real and reactive power balance equations on 

bus  are expressed as 

 

                         (2) 

                               (3) 

 

 and  are the base 

real and reactive power injections for the generator and load at 

bus  , and  , and , and  are the generation 

increment and loading level. In the paper, the loading level is 

set to the base load such that the power factors are fixed as 

load changed with λ. The real and reactive power flows are 

 

                      (4) 

 

     

                            (5) 

 

The power flow balance (2) and (3) are expressed in an 

equality functional vector as follows: 

 

              (6) 

 

where system variables vector  including bus 

voltage magnitudes and phase angles, and control variables 

vector  including the generation increments 

(or generation pattern) and reactive power injections  of all 

SVC installations. Also, the inequality constraints that should 

be satisfied with include the limits of real and reactive power 

generations, and the capacities of existing control devices 

(AVR, SC, OLTC) and SVC installations, expressed in an 

inequality functional vector as follows: 
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   (7) 

 

 

 
 

Fig. 2. Proposed LM enhancement strategy. 

 

 

Based on specific control variables values, the maximum 

loading factor  can be calculated using CPF process and the 

LM is derived as  . The objective functions include 

maximum system LM (represented as), denoted as , and 

minimum SVC installation cost, denoted as . The two 

objective functions are integrated into a multi-objective 

function, expressed as a functional vector in the following: 

 

    (8) 

 

If five years is the lifetime for an SVC installation, the 

operating cost (US$/h) for all SVC installations is [27] 

 

   (9) 

 

From (2) to (9), the LM enhancement problem with SVC 

installation is formulated as an MOP as follows: 

 

Min   

       S.t             (10)

         

                                    0 ≤ λ 

 

In the paper, the MOP for each considered contingency is 

solved by using the fitness sharing MOPSO algorithm, and 

from the obtained Pareto front set, a solution with  

and maximum performance index value  is determined 

for SVC installation, where   represents the required LM. 

III. MOP-BASED SVC INSTALLATION STRATEGY 

  

The LM enhancement strategy for SVC installation proposed 

in the paper is shown in Fig. 2. The key approaches used to 

realize the strategy are introduced as follows. 

 

 Multi-Objective Optimization Problem Solution Method 

 

In the algorithm, particle position and velocity are updated 

using the following two equations [9]: 

 

   (11) 

 
                 +      (12) 

 

 and  represent the position and velocity of particle 

 at iteration . Is the th entry of .  is the th 

entry of  that denotes the velocity of  ; 0 is an 

inertia weight determining how much the particle’s previous 

velocity is preserved;  and  are two positive acceleration 

constants;  , are random numbers sampled from 

uniform distribution ; and  are the 

personal best position of particle  and the best position in the 

entire swarm, respectively. The fitness sharing technique [25] 

is used to modify the PSO into an MOPSO for solving the 

MOP described above. The fitness sharing scheme is to 

distribute a population of particles along a set of resources. 

When a particle is sharing resources with other particles, its 

fitness is degraded proportional to the number and closeness 

to particles that surround it. If maximum objective is the target 

of the problem, the fitness sharing for particle is defined as  

 

 

      (13) 

 

A bigger fitness sharing represents that the particle is distant 

from the swarm. On the other hand, while the target is to seek 

a minimum objective, the fitness sharing is defined as 

 

        (14) 

 

where  denotes the sharing factor that measures the 

similarity from particles  to  by a distance .function . 

When the particle is averagely more distant from other 

particles, a smaller sharing factor takes place 
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    (15) 

 

And 

 

      (16) 

where  denotes the distance for the particles to remain distant 

from each other and   indexing variables in particle .   is 

set on a case-by-case basis. A particle with the best fitness 

sharing will take the position to guide the swarm into the next 

generation. With the fitness sharing scheme involved in the 

solution process, the determination of  in the traditional 

PSO algorithm is changed to  

 

of the particle with maximum (or 

minimum) fitness sharing. 

 

       Fig. 3 shows the fitness sharing MOPSO algorithm used 

to find a Pareto front set of solutions for SVC installation 

under each considered contingency. The use of PSO technique 

is to guide the search with help of fitness sharing to spread the 

particles along the Pareto front. Fitness sharing will help to 

maintain diversity between solutions, and thus particles within 

high populated areas in the objective space will be less likely 

to be followed. In each iteration, the best particles found 

(those not dominated) will be inserted into an external 

repository. This repository will help to guide the search for the 

next generations and maintain a set of not dominated solutions 

until the end of the run, which form the Pareto front set. 

 

      Referring to the LM enhancement strategy proposed in 

Fig. 2, after the Pareto front set for each considered 

contingency is derived, within the solutions with , a 

solution that has maximum performance index f1/f2  value is 

specified as the SVC installation for the contingency. Finally, 

the optimal 

 

 
 

Fig. 3. Fitness sharing MOPSO algorithm. 

 
 

Fig. 4. Modified IEEE 30-bus reliability test system. 
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SVC installation is resulted from the union of the SVC 

installations for all considered contingencies. It is conceivable 

that, compared to the SVC installation for each contingency, 

the optimal SVC installation would have bigger SVC units 

number, each SVC installation with bigger or equal capacity. 

 

IV. TEST RESULTS AND DISCUSSIONS 

 

The Optimal Power Flow (OPF) is a highly non-

linear, large scale optimization problem due to large number 

of variables & constraints. OPF with Fuel cost minimization 

as objective function is formulated as a single objective 

optimization case. The location of SVC controller and the 

setting of their control parameters are optimized by a particle 

Swarm Optimization (PSO) to improve the performance of the 

power network. Two objective functions are considered as the 

indexes of the system performance maximization of system 

loadability in system security margin and minimization of 

total generation fuel cost is multi objectives optimization case. 

The algorithm is implemented using Matlab® 2008a and is 

tested for its robustness on a standard IEEE 30 bus system. 

The network data is shown in Appendix A. The network 

consists of 6 Generator buses, 21 load buses & 41 lines, of 

which 4 lines are due to tap setting transformers. The total 

load on the network is 283.4 MW. The algorithms have been 

implemented on a personal computer with 2.44 GHz Intel core 

4 processor and 2 GB RAM. 
TABLE I 

DATA FOR TRANSMISSION LINES 

 

Fro

m 

Bus 

To 

Bu

s 

Resistan

ce (p.u.) 

Reactan

ce (p.u.) 

Half line 

charging 

susceptance(p

.u.) 

Transf

ormer 

tap 

1 2 0.0192 0.0575 0.0264 1 

1 3 0.0452 0.1852 0.0204 1 

2 4 0.057 0.1737 0.0184 1 

3 4 0.0132 0.0379 0.0042 1 

2 5 0.0472 0.1983 0.0209 1 

2 6 0.0581 0.1763 0.0187 1 

4 6 0.0119 0.0414 0.0045 1 

5 7 0.046 0.116 0.0102 1 

6 7 0.0267 0.082 0.0085 1 

6 8 0.012 0.042 0.0045 1 

6 9 0 0.208 0 1.0155 

6 10 0 0.556 0 0.9629 

9 11 0 0.208 0 1 

9 10 0 0.11 0 1 

4 12 0 0.256 0 1.0129 

12 13 0 0.14 0 1 

12 14 0.1231 0.2559 0 1 

12 15 0.0662 0.1304 0 1 

12 16 0.0945 0.1987 0 1 

14 15 0.221 0.1997 0 1 

16 17 0.0824 0.1932 0 1 

15 18 0.107 0.2185 0 1 

18 19 0.0639 0.1292 0 1 

19 20 0.034 0.068 0 1 

10 20 0.0936 0.209 0 1 

10 17 0.0324 0.0845 0 1 

10 21 0.0348 0.0749 0 1 

10 22 0.0727 0.1499 0 1 

21 22 0.0116 0.0236 0 1 

15 23 0.1 0.202 0 1 

22 24 0.115 0.179 0 1 

23 24 0.132 0.27 0 1 

24 25 0.1885 0.3292 0 1 

25 26 0.2544 0.38 0 1 

25 27 0.1093 0.2087 0 1 

28 27 0 0.396 0 0.9581 

27 29 0.2198 0.4153 0 1 

27 30 0.3202 0.6027 0 1 

29 30 0.2399 0.4533 0 1 

8 28 0.0636 0.2 0.0214 1 

6 28 0.0169 0.0599 0.0065 1 

TABLE II 
BASE LOAD AND POWER SUPPLIES 

 

Bus 

No 

P 

Gen 

Q 

Gen 

P 

Load 

Q 

Load 
Voltage 

1 0 0 0 0 1.05 

2 0.5756 0 0.217 0.127 1.0338 

3 0 0 0.024 0.012 1 

4 0 0 0.076 0.016 1 

5 0.2456 0 0.942 0.19 1.0058 

6 0 0 0 0 1 

7 0 0 0.228 0.109 1 

8 0.35 0 0.3 0.3 1.023 

9 0 0 0 0 1 

10 0 0 0.058 0.02 1 

11 0.1793 0 0 0 1.0913 

12 0 0 0.112 0.075 1 

13 0.1691 0 0 0 1.0883 

14 0 0 0.062 0.016 1 

15 0 0 0.082 0.025 1 

16 0 0 0.035 0.018 1 

17 0 0 0.09 0.058 1 

18 0 0 0.032 0.009 1 
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19 0 0 0.095 0.034 1 

20 0 0 0.022 0.007 1 

21 0 0 0.175 0.112 1 

22 0 0 0 0 1 

23 0 0 0.032 0.016 1 

24 0 0 0.087 0.067 1 

25 0 0 0 0 1 

26 0 0 0.035 0.023 1 

27 0 0 0 0 1 

28 0 0 0 0 1 

29 0 0 0.024 0.009 1 

30 0 0 0.106 0.019 1 

 

 

V. OPTIMAL POWER FLOWS WITH PARTICLE SWARM 

OPTIMIZATION 

  

In this case each particle would be including all 

control variables, i.e. 5 active powers of generators, 6 

generator voltages, 4 transformer taps & 9 shunt capacitance 

values, location & sizing of SVC (Total 26 control variables 

in a particle).  The particles length for unit active power 

outputs is 6 particles, generator voltage magnitude is 6 

particles and both of them are treated as continuous control 

variables. As the transformer tap settings can take 17 discrete 

values each one is encoded using 6 particles & the step size is 

0.0125 p.u. The bus shunt susceptance can take 6 discrete 

values each one is encoded using 6 particles, & the step size is 

0.01 p.u. (on system MVA basis). 

.   PARAMETERS: Swarm size =60, Size of particle 

=26, Maximum Number of iterations=100, acceleration 

constants C1=C2=2.05, Inertia Weight (W) =1.2 & 

Constriction Factor (K) =0.7295. 

 

MINIMIZATION OF TOTAL GENERATION FUEL 

COST & MAXIMIZATION OF SYSTEM 

LOADABILITY WITH PARTICLE SWARM 

OPTIMIZATION 

 
TABLE.III  

OPTIMAL SETTING OF CONTROL VARIABLES FOR  

OPF USING PSO (WITH &WITHOUT) SVC. 

 

Variables 
PSO without 

SVC devices 

PSO with  

SVC  devices 

Slack 174.909 175.475 

PG2 49.802 48.777 

PG5 23.017 21.306 

PG8 21.557 22.812 

PG11 11.319 12.218 

PG13 12.233 12.000 

VG1 1.050 1.050 

VG2 1.085 1.040 

VG5 1.011 1.018 

VG8 1.038 0.978 

VG11 1.034 0.978 

VG13 1.033 1.038 

Tap 6-9 1.000 0.900 

Tap 6-10 1.050 1.075 

Tap 4-12 0.988 0.988 

Tap 28-27 1.025 1.038 

Shunt 10 0.050 0.100 

Shunt 12 0.020 0.080 

Shunt 15 0.030 0.060 

Shunt 17 0.050 0.120 

Shunt 20 0.100 0.120 

Shunt 21 0.010 0.120 

Shunt 23 0.050 0.120 

Shunt 24 0.010 0.060 

Shunt 29 0.050 0.120 

Optimal 

fuel 

cost($/hr) 

804.610 803.010 

Time 223.89sec 226.57sec 

 

 
 
   It is observed that fuel cost obtained when SVC is also 

considered  as decision variable is better than that obtained 

without SVC .The fuel cost obtained without SVC is  

804.610 ($/hr) .the fuel cost obtained with SVC placed at 

location 18
th

 with its value as -0.093750  is  803.010 ($/hr). 
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Fig 5 Convergence characteristic of   PSO for OPF without SVC 

Variable Location Value 

SVC 18 0.068750 
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Fig 6 Convergence characteristic of PSO for OPF with SVC 

                                    As seen from table III PSO achieves the 

best result by placing of SVC controller in the IEEE 30-bus 

test system. Compared with the original IEEE 30-bus system 

in which SVC controller are not installed, Furthermore, the 

problem is handled as a multi-objective optimization problem 

and both fuel cost and system loadability are optimized using 

PSO (with& without) SVC. The maximal limit of the load 

factor is set at 1.5, which reflects a 50% percent increment of 

power demands. The variation of the load factor is allowed in 

the bound of [1, 1.5].  

 

VI. CONCLUSION 

 

From a long-term economic development point of view, it is 

expectable that regional or integral electric power demands 

will increase or change constantly. Besides, in the deregulated 

electrical power systems, due to open access to the 

transmission networks, various types and a large amount of 

power transactions would result in huge changing power flow. 

In this view, serious threats to power system operation 

security might occur. To improve the operation security of 

power systems while avoiding network expansion by building 

more transmission lines, it is a good choice to suitably install 

FACTS devices in existing networks such that they can 

accommodate more power transfer. The proposed MOPSO is 

then used to determine an optimal SVC installation scheme 

for the required LM with the SVC installation locations and 

capacities. From the test results, the achievement of the 

proposed strategy for SVC installation, that is well consistent 

with specific economic and technical concerns, is validated. 
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