
Kailash et al./ IJAIR Vol. 2 Issue 7 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 517

SEARCH ENGINE OPTIMIZATION USING QUERY PARSING

Kailash Kumar
1
, Vinod Bhadu

2

1
Research Scholar

1
Suresh Gyan Vihar University, Jaipur

1
Email: maheshwari_kailash2002@rediffmail.com
2
Technology Lead, Infosys Limited, Chandigarh

Abstract: The Internet has become a vast information

source in recent years. Searching the desired

information or document via internet is one of the

most important issues. Every search engine has its

own database that defines its own set of documents

which are searched by the search engines. No single

search engine is capable of searching all kinds of data

via Internet. In the modern practices, an interface is

created to call multiple search engines in order to

satisfy the users query. Calling all search engines for

each users request is not feasible as it increases the

cost because the network traffic is increased by

sending the query to different search engines, some

of which may be useless. The problem can be solved

by parsing the user’s query. The research paper

suggests an accurate and fast search mechanism using

query parsing techniques.

Keywords: Meta search engine, parsing, information

retrieval, search engines, network traffic.

I. INTRODUCTION

Nowadays, internet has become an important source

of information. To find the desired data on internet,

many search engines have been created. Every search

engine has its own database that defines the set of

documents that can be searched by the search engine.

Generally, the index is created in the database for

each documents and it is stored in the search engine

which is used to identify the document in the

database. Since, the index is already there in the

database hence, it becomes very difficult for the

search engine to answer the user’s query efficiently.

There are two types of search engines which exist in

the market, namely, General purpose search engines

and Special purpose search engines. General purpose

search engines provide searching capabilities for all

kinds of documents on the internet while Special

purpose search engines focus on documents which

are confined to specific domain. Google, Alta vista

and HotBot are example of General purpose search

engines whereas there are millions of Special purpose

search engines which currently available on the

internet.

The number of web pages is increasing at very high

rate on the internet. Therefore, it is very monotonous

to find all kind of data in a single search engine due

to several reasons. First, the processing power and

storage capabilities may not scale to the rapidly

increasing and virtually infinite amount of data.

Second, collecting all kind of data on the internet and

maintaining it rationally up to date is not easy task if

not possible. It becomes a time consuming process

for the crawlers which are used by the search engines

to collect the data automatically.

An alternative approach is to use the multilevel

search engines over the internet. At the lower level,

local search engines are used which are grouped at

higher level based on the relatedness of their database

which in turn, grouped together to form next higher

level and so on. At the top level, we have only one

search engine called Meta search engine. Whenever,

the Meta search engine receives the request from the

user in the form of query, it passes the request to

appropriate (Meta) search engine in depth first search

order. This approach has its own advantages. First,

the response time of the query processing is

substantially reduced because user queries are

evaluated against smaller database in parallel.

Second, the index of the local search engine is

modified only when the documents in its database are

updated, i.e. updating of index is localized. Third, the

local information can be collected more conveniently,

easily and timely. Last, but not the least, the memory

space and processing power of each local search

engine can be managed easily. The schematic

diagram for the above mentioned scheme is shown

below in fig 1.

When a single search engine calls many Meta search

engines, the there may be serious problem of

inefficiency. For example, for a given query, only

small fraction of all search engines may contain

useful documents. As a result, if every search engine

is called for each query, then there may be substantial

loss of network bandwidth and network traffic may

be created. Moreover, local resources of each search

engine will be wasted when useless databases are

searched. The most appropriate solution to this

mailto:maheshwari_kailash2002@rediffmail.com

Kailash et al./ IJAIR Vol. 2 Issue 7 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 518

problem is to first identify those search engines that

are most likely to provide useful results to a given

user query and then pass it to the appropriate search

engine for desired documents. But the question is

how to identify potentially useful search engines. The

solution to the above problem is to rank all

underlying databases in decreasing order of their

usefulness for each query using some metadata that

describes the contents of each database. Generally,

the ranking is based on some parameters which

ordinary users may not be able to utilize to fit their

needs. The current approach can describe the user, to

some degree of accuracy, which search engine is

likely to be the most useful, the second most useful,

etc for a given user query. Although, such ranking

scheme will be useful but it can not say anything

about the usefulness of any particular search engine

to the user.

Query Result

 Query Query Result Query Result

Result

 …….

 Fig 1: A Typical Meta Search Engine

The usefulness of any search engine for a given user

query is measured in terms of two parameters, first,

the number of documents (NoDoc) in the database of

the search engine that is more likely to be useful to

the query, that is, the similarities between the query

and the documents as measured by a certain global

similarity function are higher than a specified

threshold, and second, the average similarity

(AvgSim) of these potentially useful documents. It is

important to keep in mind that the global similarity

function may vary with the local similarity function

used by a local search engine. These two parameters

together describe the usefulness of any search engine

for a given user query. Mathematically, these terms

can be defined as follows:

𝑁𝑜𝐷𝑜𝑐 𝑇, 𝑞, 𝐷
= 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑑 𝑑 ∈ 𝐷 𝑎𝑛𝑑 𝑠𝑖𝑚 𝑞, 𝑑 > 𝑇

And

𝐴𝑣𝑔𝑆𝑖𝑚 𝑇, 𝑞, 𝐷 =
𝛴𝑑 ∈ 𝐷⋀𝑠𝑖𝑚 𝑞, 𝑑 > 𝑇𝑠𝑖𝑚 (𝑞,𝑑))

𝑁𝑜𝐷𝑜𝑐 𝑇, 𝑞, 𝐷

Where, T: a threshold value

D: database of the search engine

𝑆𝑖𝑚 𝑞, 𝐷 : Similarity between user’s query q and

document d in the database D.

It is very important for the users to determine which

search engine to use and how many numbers of

documents to be retrieved from the each search

engine. For instance, if the user can forecast that a

highly ranked search engine with a large database has

very few useful documents and searching such a

large database is not cost effective, then the user may

not use that search engine. The cost of using such a

search engine can be reduced by limiting the number

of documents to be returned to the number of useful

documents in the search engine.

In this paper, a new measure which is easy to

understand and informative is proposed to

characterise the usefulness of a search engine with

respect to the users query. Next, a subrange based

estimation method is proposed to recognize search

engines to use for a given query and to estimate the

usefulness of a search engine for the query.

II. RELATED WORK

In order to discover useful search engines to a query,

some attributes about the database of each search

engine must be stored in the Meta search engine.

Such information is known as the representative of a

search engine. Based on the representatives used,

different methods can be developed for identifying

useful search engines.

Several Meta search engines are in working using a

range of methods to recognize potentially useful

search engines [3], [5], [7], [8], [9] and [10].

However, the database representatives used in most

Meta search engines cannot be used to estimate the

number of globally most similar documents in each

search engine [1], [7], [8] and [10]. In addition, the

precautions that are used by these Meta search

 Meta Search Engine

Search Engine 2

Search Engine 1 Search Engine m

Kailash et al./ IJAIR Vol. 2 Issue 7 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 519

engines to rank the search engines are not easy to

understand. As a result, separate methods have to be

used to convert these measures to the number of

documents to retrieve from each search engine.

Another shortcoming of these measures is that they

are independent of the similarity threshold. As a

result, a search engine will always be ranked the

same regardless of how many documents are desired,

if the databases of these search engines are fixed.

This is in conflict with the following situation. For a

given query, a search engine may contain many

moderately similar documents but very few or zero

highly similar documents. In this case, a good

measure should rank the search engine high if a large

number of moderately similar documents are desired

and rank the search engine low if only highly similar

documents are desired.

A probabilistic model for distributed information

retrieval is proposed in [2]. The method is more

suitable in an environment where documents

previously retrieved have been identified to be either

relevant or irrelevant.

A database of m distinct terms is represented in

gGlOSS [5] by m pairs (fi:Wi), where fi is the number

of documents in the database that contain the i
th

term

and Wi is the sum of weights of the i
th

 term over all

documents in the database, 𝑖 = 1, 2, 3 𝑚. The

usefulness of a search engine with respect to a given

query is defined to be the sum of all documents

similarities with the query that are greater than a

threshold

A method is proposed in [8] to estimate the number

of useful documents in a database for the binary and

independent case. In this, each document d is

represented as a binary vector such that a 0 or 1 at the

i
th

 position indicates the absence or presence of the i
th

term in document d, and the occurrences of terms in

different documents are assumed to be independent.

A significant amount of information will be lost

when documents are represented by binary vectors.

As a consequence of which, these methods are rarely

used in practice. The estimation method in [6]

assumes term weights to be non-binary.

III. USEFULNESS ESTIMATION

In this section, the basic method for estimating the

usefulness of a search engine is described which

allows the values of the term weight to be any non-

negative real numbers. The basic assumptions used in

this method are: the distributions of the occurrences

of the terms in the documents are independent and all

documents having a term have the same weight for

the term for a given database in the search engine.

This basic method can very accurately estimate the

usefulness of the search engine. Next, subrange-

based statistical method is described which can

eliminate the second assumption.

IV. BASIC METHOD

Consider a database D of a search engine with m

distinct terms. Each document d in the database can

be represented as a vector 𝑑 = 𝑑1, 𝑑2………𝑑𝑚 ,
where 𝑑𝑖 is the weight of the i

th
 term 𝑡𝑖 in

representing the document, 1 ≤ 𝑖 ≤ 𝑚. Let us

consider the query 𝑞 = (𝑢1, 𝑢2, , 𝑢𝑚), where

𝑢𝑖 is the weight of the 𝑡𝑖 in the query, 1 ≤ 𝑖 ≤ 𝑚.
If the term does not appear in the query, then its

corresponding weight will be zero. The similarity

between query 𝑞 and document 𝑑 can be defined as

the dot product of their respective vectors, i.e.

𝑠𝑖𝑚(𝑞 , 𝑑) = 𝑢1 ∗ 𝑑1 + + 𝑢𝑚 ∗ 𝑑𝑚.

In this method, the database D is represented as 𝑚

pairs {(𝑝𝑖, 𝑤𝑖)}, where 1 ≤ 𝑖 ≤ 𝑚 and 𝑝𝑖 is the

probability that term 𝑡𝑖 appears in a document in D

and 𝑤𝑖 is the average of the weights of 𝑡𝑖 in the set of

documents containing 𝑡𝑖. For a given query 𝑞 =
 (𝑢1, 𝑢2, , 𝑢𝑚), the database representative is

used to estimate the usefulness of database D.

Consider the following generating function:

(𝑝1 ∗ 𝑋𝑤1∗𝑢1 + (1 – 𝑝1)) ∗ (𝑝2 ∗ 𝑋𝑤2∗𝑢2 +

 (1 – 𝑝2)) ∗∗ (𝑝𝑟 ∗ 𝑋𝑤𝑟∗𝑢𝑟 + (1 – 𝑝𝑟))

Where, 𝑋 is a dummy variable.

Let us consider the query 𝑞 and database D. If the

terms are independent and the weight of term 𝑡𝑖
whenever present in a document is 𝑤𝑖, which is given

the database representative (1 ≤ 𝑖 ≤ 𝑟), then the

coefficient of 𝑋𝑠 in the above function is the

probability that a document in D has similarity 𝑠 with

𝑞.

V. SUBRANGE BASED ESTIMATION

METHOD

In the basic method, it was assumed that all

documents having a term have the same weight for

the term. While in realistic, it is not so. This sort of

problem is overcome in the subrange based statistical

method. The different documents having a term may

have different weight for the term.

Let us consider a term 𝑡, 𝜔 the average and 𝜎 be the

standard deviation of the weights of term 𝑡 in the set

Kailash et al./ IJAIR Vol. 2 Issue 7 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 520

of documents containing the term 𝑡. Let 𝑝 be the

probability that the term 𝑡 appears in a document in

the database.

Let 𝑡 be the term in a specific query then the

following equation is included in the probability

generating function:

𝑝 ∗ 𝑋𝑢∗𝑤 + 1 − 𝑝
Where, 𝑢 is the weight of the term in the user query.

The above equation assumes that the term 𝑡 has

uniform weight of 𝑤 for all documents containing the

term while in reality the term weights may have non-

uniform distribution among the documents having the

term. Let the weights of the terms be

𝑤1,𝑤2, , 𝑤𝑘,
Where, 𝑤1 > 𝑤2 >. > 𝑤𝑘
𝑘: the number of documents having the term and k =

p * n and

𝑛: the total number of documents in the database.

Now, suppose that we partition the weight range of

𝑡 into four subranges, each containing 25 percent of

the term weights, as follows. The first subrange

contains the weights from 𝑤1 to 𝑤𝑠, where 𝑠 =
 25% ∗ 𝑘; the second subrange contains the weights

from 𝑤𝑠1 to 𝑤𝑡 , where 𝑡 = 50% ∗ 𝑘; the third

subrange contains the weights from 𝑤𝑡+1 to 𝑤𝑣 ,

where, 𝑣 = 75% ∗ 𝑘 and the last subrange contains

weights from 𝑤𝑣+1 to 𝑤𝑘 . In the first subrange, the

median is the 25% ∗
𝑘

2
 𝑡ℎ weight of the term

weights in the subrange and is 𝑤𝑚1 , where, 𝑚1 =
 12: 5% ∗ 𝑘; similarly, the median weights in the

second, the third, and the fourth subranges have

median weights 𝑤𝑚2, 𝑤𝑚3 and 𝑤𝑚4, respectively,

where, 𝑚2 = 37: 5% ∗ 𝑘,𝑚3 = 62: 5% ∗ 𝑘, and

𝑚4 = 87: 5% ∗ 𝑘.

Then, the distribution of the term weights of 𝑡 may be

approximated by the following distribution: The term

has a uniform weight of 𝑤𝑚1 for the first 25 percent

of the 𝑘 documents having the term, another uniform

weight of 𝑤𝑚2 for the next 25 percent of the 𝑘

documents, another uniform weight of 𝑤𝑚3 for the

next 25 percent of documents and another uniform

weight of 𝑤𝑚4 for the last 25 percent of documents.

With the above weight approximation, for a query

containing term t, polynomial (4) in the generating

function can be replaced by the following

polynomial:

𝑝1 ∗ 𝑋𝑢∗𝑤𝑚1 + 𝑝2 ∗ 𝑋𝑢∗𝑤𝑚2 + 𝑝3 ∗ 𝑋𝑢∗𝑤𝑚3 + 𝑝4
∗ 𝑋𝑢∗𝑤𝑚4 + 1 − 𝑝

Where, 𝑝𝑗 is the probability that term 𝑡 occurs in a

document and has a weight of 𝑤𝑚𝑗 , for 𝑗 = 1,2,3,4.

Since, 25% of those documents having term 𝑡 are

assumed to have a weight of 𝑤𝑚𝑗 for term 𝑡, for each

𝑗, 𝑝𝑗 = 𝑝/4. Essentially, polynomial (5) is

obtained from polynomial (4)by decomposing the

probability 𝑝 that a document has the term into four

probabilities, 𝑝1, 𝑝2, 𝑝3, 𝑎𝑛𝑑 𝑝4, corresponding to

the four subranges.

It is important to note that the subrange-based

method needs to know the standard deviation of the

weights for each term. As a result, a database with 𝑚

terms is now represented as 𝑚 triplets{(𝑝𝑖, 𝑤𝑖, 𝜎𝑖)},

for 𝑖 = 1, 𝑚, where 𝑝𝑖 is the probability that

term 𝑡𝑖 appears in a document in the database, 𝑤𝑖 is

the average weight of term 𝑡𝑖 in all documents

containing the term and 𝜎𝑖 is the standard deviation

of the weights of 𝑡𝑖 in all documents containing 𝑡𝑖.
Furthermore, if the maximum normalized weight of

each term is used by the highest subrange, then the

database representative will contain 𝑚

quadruplets{(𝑝𝑖, 𝑤𝑖, 𝜎𝑖,𝑚𝑤𝑖)}, with 𝑚𝑤𝑖 being the

maximum normalized weight for term 𝑡𝑖. The

experimental results indicate that the maximum

normalized weight is a critical parameter that can

drastically improve the estimation accuracy of search

engine usefulness.

VI. ISSUES ON APPLICABILITY

If the representative of a database used by an

estimation method has a large size relative to that of

the database, then estimation method will have a poor

scalability, as this method is difficult to scale to

thousands of text databases. Suppose each term

occupies four bytes and each number (probability,

average weight, standard deviation, and maximum

normalized weight) also occupies 4 bytes. Consider a

database with 𝑚 distinct terms. For the subrange-

based estimation method, 𝑚 probabilities, 𝑚 average

weights, 𝑚 standard derivations, and 𝑚 maximum

normalized weights are stored in the database

representative, resulting in a total storage overhead of

20 ∗ 𝑚 bytes.

If the number of search engines is very large, the

representatives can be clustered to form a hierarchy

of representatives. Each query is first compared

against the highest level representatives. Only

representatives whose ancestor representatives have

been estimated to have a large number of very similar

documents will be examined further. As a result,

most database representatives will not be compared

against the query.

To obtain the accurate representative of a database,

we need to know the following information: first, the

number of documents in the database, second, the

Kailash et al./ IJAIR Vol. 2 Issue 7 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 521

document frequency of each term in the database

(i.e., the number of documents in the database that

contain the term) and third, the weight of each term

in each document in the database. First two things are

needed to compute the probabilities and third one is

needed to compute average weights, maximum

normalized weights, and standard deviations. First

two things can be easily obtained. For example, when

a query containing a single term is submitted to a

search engine, the number of hits returned is the

document frequency of the term.

In an environment where internet is used, it may not

be feasible to anticipate a search engine to provide

the weight of each term in each document in the

search engine. Following techniques can be used to

obtain the average term weight, their standard

deviations and maximum normalized term weights.

1. Sampling technique can be used to estimate

the average weight and the standard

deviation for each term. When a query is

submitted to a search engine, a set S of

documents will be returned as a result of the

search. For each term t in S and each

document d in S, the term frequency of t in d

(i.e., the number of times t appears in d) can

be computed. As a result, the weight of term

t in document d can be computed. If the

weights of t in a reasonably large number of

documents can be computed then an

approximate average weight and an

approximate standard deviation for term t

can be obtained. Since, the returned

documents for each query may contain many

different terms, the above estimation can be

carried out for many terms at the same time.

2. Find out the maximum normalized weight

for each term t directly as follows with

respect to the global similarity function used

in Meta search engine: submit term t as a

single term query to the local search engine

which retrieves documents according to a

local similarity function.

VII. CONCLUSIONS

The paper introduces the usefulness measure of the

search engine which is intuitive and easily

understood by the users. A statistical method is

presented to estimate the usefulness of a given search

engine with respect to each query. Accurate

estimation of the usefulness measure allows a Meta

search engine to send queries to only the appropriate

local search engines to be processes which in turn

will save both the communication cost and the local

processing cost substantially. Estimation method has

the following properties:

1. The estimation makes use of the number of

documents desired by the user (or the

threshold of retrieval), unlike some other

estimation methods which rank search

engines without using the above

information.

2. It guarantees that those search engines

containing the most similar documents are

correctly identified when the submitted

queries are single-term queries. Internet

users submit a high percentage of such short

queries and they can all be sent to the

correct search engines to be processed.

REFERNCES

[1] J. Callan, Z. Lu, and W.B. Croft, “Searching

Distributed Collections with Inference

Networks,” ACM SIGIR Conf.

[2] C. Baumgarten, “A Probabilistic Model for

Distributed Information Retrieval,” Proc.

ACM SIGIR Conf.

[3] L. Gravano and H. Garcia-Molina,

“Generalizing GlOSS to Vector- Space

Databases and Broker Hierarchies,” Proc.

Int’l Conf. Very Large Data Bases.

[4] W. Meng, K. Liu, C. Yu, X. Wang, Y.

Chang, and N. Rishe, “Determining Text

Databases to Search on the Internet,” Proc.

Int’l Conf. Very Large Data Bases.

[5] Howe and D. Dreilinger, “SavvySearch: A

Meta-Search Engine that Learns Which

Search Engines to Query,” AI Magazine,

vol. 18, no. 2.

[6] Yu, W. Luk, and M. Siu, “On the Estimation

of the Number of Desired Records with

Respect to a Given Query,” Proc. ACM

Trans. Database Systems.

Kailash et al./ IJAIR Vol. 2 Issue 7 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 522

[7] Kahle and A. Medlar, “An Information

System for Corporate Users: Wide Area

information Servers,” Technical Report

TMC199, Thinking Machine Corp.

[8] M. Koster, “ALIWEB: Archie-Like

Indexing in the Web,” Computer Networks

and ISDN Systems, vol. 27, no. 2, pp. 175-

182.

[9] U. Manber and P. Bigot, “The Search

Broker,” Proc. USENIX Symp. Internet

Technologies and Systems (NSITS ’97), pp.

231-239.

[10] B. Yuwono and D. Lee, “Server Ranking for

Distributed Text Resource Systems on the

Internet,” Proc. Fifth Int’l Conf. Database

Systems for Advanced Applications

(DASFAA ’97), pp. 391-400.

