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Abstract: The Internet has become a vast information 

source in recent years. Searching the desired 

information or document via internet is one of the 

most important issues. Every search engine has its 

own database that defines its own set of documents 

which are searched by the search engines. No single 

search engine is capable of searching all kinds of data 

via Internet. In the modern practices, an interface is 

created to call multiple search engines in order to 

satisfy the users query. Calling all search engines for 

each users request is not feasible as it increases the 

cost because the network traffic is increased by 

sending the query to different search engines, some 

of which may be useless. The problem can be solved 

by parsing the user’s query. The research paper 

suggests an accurate and fast search mechanism using 

query parsing techniques. 

 

Keywords: Meta search engine, parsing, information 

retrieval, search engines, network traffic. 

 
I. INTRODUCTION 

 

Nowadays, internet has become an important source 

of information. To find the desired data on internet, 

many search engines have been created. Every search 

engine has its own database that defines the set of 

documents that can be searched by the search engine. 

Generally, the index is created in the database for 

each documents and it is stored in the search engine 

which is used to identify the document in the 

database. Since, the index is already there in the 

database hence, it becomes very difficult for the 

search engine to answer the user’s query efficiently. 

 

There are two types of search engines which exist in 

the market, namely, General purpose search engines 

and Special purpose search engines. General purpose 

search engines provide searching capabilities for all 

kinds of documents on the internet while Special 

purpose search engines focus on documents which 

are confined to specific domain. Google, Alta vista 

and HotBot are example of General purpose search 

engines whereas there are millions of Special purpose 

search engines which currently available on the 

internet. 

 

The number of web pages is increasing at very high 

rate on the internet. Therefore, it is very monotonous 

to find all kind of data in a single search engine due 

to several reasons. First, the processing power and 

storage capabilities may not scale to the rapidly 

increasing and virtually infinite amount of data. 

Second, collecting all kind of data on the internet and 

maintaining it rationally up to date is not easy task if 

not possible. It becomes a time consuming process 

for the crawlers which are used by the search engines 

to collect the data automatically. 

 

An alternative approach is to use the multilevel 

search engines over the internet. At the lower level, 

local search engines are used which are grouped at 

higher level based on the relatedness of their database 

which in turn, grouped together to form next higher 

level and so on. At the top level, we have only one 

search engine called Meta search engine. Whenever, 

the Meta search engine receives the request from the 

user in the form of query, it passes the request to 

appropriate (Meta) search engine in depth first search 

order. This approach has its own advantages. First, 

the response time of the query processing is 

substantially reduced because user queries are 

evaluated against smaller database in parallel. 

Second, the index of the local search engine is 

modified only when the documents in its database are 

updated, i.e. updating of index is localized. Third, the 

local information can be collected more conveniently, 

easily and timely. Last, but not the least, the memory 

space and processing power of each local search 

engine can be managed easily. The schematic 

diagram for the above mentioned scheme is shown 

below in fig 1.  

When a single search engine calls many Meta search 

engines, the there may be serious problem of 

inefficiency. For example, for a given query, only 

small fraction of all search engines may contain 

useful documents. As a result, if every search engine 

is called for each query, then there may be substantial 

loss of network bandwidth and network traffic may 

be created. Moreover, local resources of each search 

engine will be wasted when useless databases are 

searched. The most appropriate solution to this 
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problem is to first identify those search engines that 

are most likely to provide useful results to a given 

user query and then pass it to the appropriate search 

engine for desired documents. But the question is 

how to identify potentially useful search engines. The 

solution to the above problem is to rank all 

underlying databases in decreasing order of their 

usefulness for each query using some metadata that 

describes the contents of each database. Generally, 

the ranking is based on some parameters which 

ordinary users may not be able to utilize to fit their 

needs. The current approach can describe the user, to 

some degree of accuracy, which search engine is 

likely to be the most useful, the second most useful, 

etc for a given user query. Although, such ranking 

scheme will be useful but it can not say anything 

about the usefulness of any particular search engine 

to the user.  

 

Query       Result 

 

 

 

 

                                  Query                           Query  Result Query        Result 

Result 

 

 ……. 

 

 

       Fig 1: A Typical Meta Search Engine  

 

The usefulness of any search engine for a given user 

query is measured in terms of two parameters, first, 

the number of documents (NoDoc) in the database of 

the search engine that is more likely to be useful to 

the query, that is, the similarities between the query 

and the documents as measured by a certain global 

similarity function are higher than a specified 

threshold, and second, the average similarity 

(AvgSim) of these potentially useful documents. It is 

important to keep in mind that the global similarity 

function may vary with the local similarity function 

used by a local search engine. These two parameters 

together describe the usefulness of any search engine 

for a given user query. Mathematically, these terms 

can be defined as follows: 

 

𝑁𝑜𝐷𝑜𝑐 𝑇, 𝑞, 𝐷 
= 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦  𝑑 𝑑 ∈ 𝐷 𝑎𝑛𝑑 𝑠𝑖𝑚 𝑞, 𝑑 > 𝑇   

And     

𝐴𝑣𝑔𝑆𝑖𝑚 𝑇, 𝑞, 𝐷 =
𝛴𝑑 ∈ 𝐷⋀𝑠𝑖𝑚 𝑞, 𝑑 > 𝑇𝑠𝑖𝑚 (𝑞,𝑑)) 

𝑁𝑜𝐷𝑜𝑐 𝑇, 𝑞, 𝐷 
 

 

Where, T: a threshold value 

D: database of the search engine 

𝑆𝑖𝑚 𝑞, 𝐷 : Similarity between user’s query q and 

document d in the database D. 

 

It is very important for the users to determine which 

search engine to use and how many numbers of 

documents to be retrieved from the each search 

engine. For instance, if the user can forecast that a 

highly ranked search engine with a large database has 

very few useful documents and searching such a 

large database is not cost effective, then the user may 

not use that search engine. The cost of using such a 

search engine can be reduced by limiting the number 

of documents to be returned to the number of useful 

documents in the search engine. 

 

In this paper, a new measure which is easy to 

understand and informative is proposed to 

characterise the usefulness of a search engine with 

respect to the users query. Next, a subrange based 

estimation method is proposed to recognize search 

engines to use for a given query and to estimate the 

usefulness of a search engine for the query. 

 

II. RELATED WORK 

 

In order to discover useful search engines to a query, 

some attributes about the database of each search 

engine must be stored in the Meta search engine. 

Such information is known as the representative of a 

search engine. Based on the representatives used, 

different methods can be developed for identifying 

useful search engines. 

 

Several Meta search engines are in working using a 

range of methods to recognize potentially useful 

search engines [3], [5], [7], [8], [9] and [10]. 

However, the database representatives used in most 

Meta search engines cannot be used to estimate the 

number of globally most similar documents in each 

search engine [1], [7], [8] and [10]. In addition, the 

precautions that are used by these Meta search 

  Meta Search Engine  

Search Engine 2 

 

Search Engine 1 Search Engine m 
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engines to rank the search engines are not easy to 

understand. As a result, separate methods have to be 

used to convert these measures to the number of 

documents to retrieve from each search engine.  

 

Another shortcoming of these measures is that they 

are independent of the similarity threshold. As a 

result, a search engine will always be ranked the 

same regardless of how many documents are desired, 

if the databases of these search engines are fixed. 

This is in conflict with the following situation. For a 

given query, a search engine may contain many 

moderately similar documents but very few or zero 

highly similar documents. In this case, a good 

measure should rank the search engine high if a large 

number of moderately similar documents are desired 

and rank the search engine low if only highly similar 

documents are desired.   

 

A probabilistic model for distributed information 

retrieval is proposed in [2]. The method is more 

suitable in an environment where documents 

previously retrieved have been identified to be either 

relevant or irrelevant. 

 

A database of m distinct terms is represented in 

gGlOSS [5] by m pairs (fi:Wi), where fi is the number 

of documents in the database that contain the i
th 

term 

and Wi is the sum of weights of the i
th

 term over all 

documents in the database, 𝑖 = 1, 2, 3 . . . . . . . 𝑚. The 

usefulness of a search engine with respect to a given 

query is defined to be the sum of all documents 

similarities with the query that are greater than a 

threshold 

 

A method is proposed in [8] to estimate the number 

of useful documents in a database for the binary and 

independent case. In this, each document d is 

represented as a binary vector such that a 0 or 1 at the 

i
th

 position indicates the absence or presence of the i
th

 

term in document d, and the occurrences of terms in 

different documents are assumed to be independent. 

A significant amount of information will be lost 

when documents are represented by binary vectors. 

As a consequence of which, these methods are rarely 

used in practice. The estimation method in [6] 

assumes term weights to be non-binary. 

 

III. USEFULNESS ESTIMATION 

 

In this section, the basic method for estimating the 

usefulness of a search engine is described which 

allows the values of the term weight to be any non-

negative real numbers. The basic assumptions used in 

this method are: the distributions of the occurrences 

of the terms in the documents are independent and all 

documents having a term have the same weight for 

the term for a given database in the search engine. 

This basic method can very accurately estimate the 

usefulness of the search engine. Next, subrange-

based statistical method is described which can 

eliminate the second assumption. 
 

IV. BASIC METHOD 

 

Consider a database D of a search engine with m 

distinct terms. Each document d in the database can 

be represented as a vector 𝑑 =  𝑑1, 𝑑2………𝑑𝑚 , 
where 𝑑𝑖 is the weight of the i

th
 term 𝑡𝑖 in 

representing the document, 1 ≤  𝑖 ≤  𝑚. Let us 

consider the query 𝑞 =  (𝑢1, 𝑢2, . . . . . . . , 𝑢𝑚), where 

𝑢𝑖 is the weight of the 𝑡𝑖 in the query, 1 ≤  𝑖 ≤  𝑚. 
If the term does not appear in the query, then its 

corresponding weight will be zero. The similarity 

between query 𝑞 and document 𝑑 can be defined as 

the dot product of their respective vectors, i.e. 

𝑠𝑖𝑚(𝑞 , 𝑑)  =  𝑢1 ∗ 𝑑1 + . . . . + 𝑢𝑚 ∗  𝑑𝑚. 

In this method, the database D is represented as 𝑚 

pairs {(𝑝𝑖, 𝑤𝑖)}, where 1 ≤  𝑖 ≤  𝑚 and 𝑝𝑖 is the 

probability that term 𝑡𝑖 appears in a document in D 

and 𝑤𝑖 is the average of the weights of 𝑡𝑖 in the set of 

documents containing 𝑡𝑖. For a given query 𝑞 =
 (𝑢1, 𝑢2, . . . . . . . , 𝑢𝑚), the database representative is 

used to estimate the usefulness of database D. 

 

Consider the following generating function: 

 

(𝑝1 ∗  𝑋𝑤1∗𝑢1  +  (1 –  𝑝1))  ∗  (𝑝2 ∗  𝑋𝑤2∗𝑢2  +

 (1 –  𝑝2))  ∗ . . . . .∗  (𝑝𝑟 ∗  𝑋𝑤𝑟∗𝑢𝑟  +  (1 –  𝑝𝑟))     
 

Where, 𝑋 is a dummy variable.  

 

Let us consider the query 𝑞 and database D. If the 

terms are independent and the weight of term 𝑡𝑖 
whenever present in a document is 𝑤𝑖, which is given 

the database representative (1 ≤  𝑖 ≤  𝑟), then the 

coefficient of 𝑋𝑠  in the above function is the 

probability that a document in D has similarity 𝑠 with 

𝑞. 

 
V. SUBRANGE BASED ESTIMATION 

METHOD 

 
In the basic method, it was assumed that all 

documents having a term have the same weight for 

the term. While in realistic, it is not so. This sort of 

problem is overcome in the subrange based statistical 

method. The different documents having a term may 

have different weight for the term.   

Let us consider a term 𝑡, 𝜔 the average and 𝜎 be the 

standard deviation of the weights of term 𝑡 in the set 
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of documents containing the term 𝑡. Let 𝑝 be the 

probability that the term 𝑡 appears in a document in 

the database.  

 

Let 𝑡 be the term in a specific query then the 

following equation is included in the probability 

generating function: 

𝑝 ∗ 𝑋𝑢∗𝑤 +  1 − 𝑝  
Where, 𝑢 is the weight of the term in the user query. 

The above equation assumes that the term 𝑡 has 

uniform weight of 𝑤 for all documents containing the 

term while in reality the term weights may have non-

uniform distribution among the documents having the 

term. Let the weights of the terms be 

𝑤1,𝑤2, . . . . , 𝑤𝑘,  
Where, 𝑤1 > 𝑤2 >. . . . . . > 𝑤𝑘 
𝑘: the number of documents having the term and k = 

p * n and 

𝑛: the total number of documents in the database.  

 

Now, suppose that we partition the weight range of 

𝑡 into four subranges, each containing 25 percent of 

the term weights, as follows. The first subrange 

contains the weights from 𝑤1 to 𝑤𝑠, where 𝑠 =
 25% ∗  𝑘; the second subrange contains the weights 

from 𝑤𝑠1 to 𝑤𝑡 , where 𝑡 =  50% ∗  𝑘; the third 

subrange contains the weights from 𝑤𝑡+1 to 𝑤𝑣  , 

where, 𝑣 =  75% ∗  𝑘 and the last subrange contains 

weights from 𝑤𝑣+1 to 𝑤𝑘 . In the first subrange, the 

median is the  25% ∗
𝑘

2
 𝑡ℎ weight of the term 

weights in the subrange and is 𝑤𝑚1 , where, 𝑚1 =
 12: 5% ∗  𝑘; similarly, the median weights in the 

second, the third, and the fourth subranges have 

median weights 𝑤𝑚2, 𝑤𝑚3 and 𝑤𝑚4, respectively, 

where, 𝑚2 =  37: 5% ∗  𝑘,𝑚3 =  62: 5% ∗  𝑘, and 

𝑚4 =  87: 5% ∗  𝑘.  
 

Then, the distribution of the term weights of 𝑡 may be 

approximated by the following distribution: The term 

has a uniform weight of 𝑤𝑚1  for the first 25 percent 

of the 𝑘 documents having the term, another uniform 

weight of 𝑤𝑚2  for the next 25 percent of the 𝑘 

documents, another uniform weight of 𝑤𝑚3  for the 

next 25 percent of documents and another uniform 

weight of 𝑤𝑚4  for the last 25 percent of documents. 

 

With the above weight approximation, for a query 

containing term t, polynomial (4) in the generating 

function can be replaced by the following 

polynomial: 

𝑝1 ∗ 𝑋𝑢∗𝑤𝑚1 + 𝑝2 ∗ 𝑋𝑢∗𝑤𝑚2 + 𝑝3 ∗ 𝑋𝑢∗𝑤𝑚3 + 𝑝4
∗ 𝑋𝑢∗𝑤𝑚4 +  1 − 𝑝  

Where, 𝑝𝑗 is the probability that term 𝑡 occurs in a 

document and has a weight of 𝑤𝑚𝑗  , for 𝑗 = 1,2,3,4. 

Since, 25% of those documents having term 𝑡 are 

assumed to have a weight of 𝑤𝑚𝑗  for term 𝑡, for each 

𝑗, 𝑝𝑗 =  𝑝/4.  Essentially, polynomial (5)  is 

obtained from polynomial (4)by decomposing the 

probability 𝑝 that a document has the term into four 

probabilities, 𝑝1, 𝑝2, 𝑝3, 𝑎𝑛𝑑 𝑝4, corresponding to 

the four subranges. 

 

It is important to note that the subrange-based 

method needs to know the standard deviation of the 

weights for each term. As a result, a database with 𝑚 

terms is now represented as 𝑚 triplets{(𝑝𝑖, 𝑤𝑖, 𝜎𝑖)}, 

for 𝑖 =  1, . . . . 𝑚, where 𝑝𝑖 is the probability that 

term 𝑡𝑖 appears in a document in the database, 𝑤𝑖 is 

the average weight of term 𝑡𝑖 in all documents 

containing the term and 𝜎𝑖 is the standard deviation 

of the weights of 𝑡𝑖 in all documents containing 𝑡𝑖. 
Furthermore, if the maximum normalized weight of 

each term is used by the highest subrange, then the 

database representative will contain 𝑚 

quadruplets{(𝑝𝑖, 𝑤𝑖, 𝜎𝑖,𝑚𝑤𝑖)}, with 𝑚𝑤𝑖  being the 

maximum normalized weight for term 𝑡𝑖. The   

experimental results indicate that the maximum 

normalized weight is a critical parameter that can 

drastically improve the estimation accuracy of search 

engine usefulness.  

 

VI. ISSUES ON APPLICABILITY 

 

If the representative of a database used by an 

estimation method has a large size relative to that of 

the database, then estimation method will have a poor 

scalability, as this method is difficult to scale to 

thousands of text databases. Suppose each term 

occupies four bytes and each number (probability, 

average weight, standard deviation, and maximum 

normalized weight) also occupies 4 bytes. Consider a 

database with 𝑚 distinct terms. For the subrange-

based estimation method, 𝑚 probabilities, 𝑚 average 

weights, 𝑚 standard derivations, and 𝑚  maximum 

normalized weights are stored in the database 

representative, resulting in a total storage overhead of 

20 ∗  𝑚 bytes. 

If the number of search engines is very large, the 

representatives can be clustered to form a hierarchy 

of representatives. Each query is first compared 

against the highest level representatives. Only 

representatives whose ancestor representatives have 

been estimated to have a large number of very similar 

documents will be examined further. As a result, 

most database representatives will not be compared 

against the query.  

 

To obtain the accurate representative of a database, 

we need to know the following information: first, the 

number of documents in the database, second, the 
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document frequency of each term in the database 

(i.e., the number of documents in the database that 

contain the term) and third, the weight of each term 

in each document in the database. First two things are 

needed to compute the probabilities and third one is 

needed to compute average weights, maximum 

normalized weights, and standard deviations. First 

two things can be easily obtained. For example, when 

a query containing a single term is submitted to a 

search engine, the number of hits returned is the 

document frequency of the term. 

 

In an environment where internet is used, it may not 

be feasible to anticipate a search engine to provide 

the weight of each term in each document in the 

search engine. Following techniques can be used to 

obtain the average term weight, their standard 

deviations and maximum normalized term weights. 

 

1. Sampling technique can be used to estimate 

the average weight and the standard 

deviation for each term. When a query is 

submitted to a search engine, a set S of 

documents will be returned as a result of the 

search. For each term t in S and each 

document d in S, the term frequency of t in d 

(i.e., the number of times t appears in d) can 

be computed. As a result, the weight of term 

t in document d can be computed. If the 

weights of t in a reasonably large number of 

documents can be computed then an 

approximate average weight and an 

approximate standard deviation for term t 

can be obtained. Since, the returned 

documents for each query may contain many 

different terms, the above estimation can be 

carried out for many terms at the same time.  

2. Find out the maximum normalized weight 

for each term t directly as follows with 

respect to the global similarity function used 

in Meta search engine: submit term t as a 

single term query to the local search engine 

which retrieves documents according to a 

local similarity function. 

  

 

VII. CONCLUSIONS 

 

The paper introduces the usefulness measure of the 

search engine which is intuitive and easily 

understood by the users. A statistical method is 

presented to estimate the usefulness of a given search 

engine with respect to each query. Accurate 

estimation of the usefulness measure allows a Meta 

search engine to send queries to only the appropriate 

local search engines to be processes which in turn 

will save both the communication cost and the local 

processing cost substantially. Estimation method has 

the following properties:  

 

1. The estimation makes use of the number of 

documents desired by the user (or the 

threshold of retrieval), unlike some other 

estimation methods which rank search 

engines without using the above 

information. 

 

2. It guarantees that those search engines 

containing the most similar documents are 

correctly identified when the submitted 

queries are single-term queries. Internet 

users submit a high percentage of such short 

queries and they can all be sent to the 

correct search engines to be processed. 
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