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Abstract— Intensity inhomogeneity often occurs in real-

world images, which presents a considerable challenge 

in image segmentation. The most widely used image 

segmentation algorithms are region-based and typically 

rely on the homogeneity of the image intensities in the 

regions of interest, which often fail to provide accurate 

segmentation results due to the intensity inhomogeneity. 

This paper proposes a novel region-based method for 

image segmentation, which is able to deal with intensity 

inhomogeneities in the segmentation. First, based on the 

model of images with intensity inhomogeneities, we 

derive a local intensity clustering property of the image 

intensities, and define a local clustering criterion 

function for the image intensities in a neighborhood of 

each point. This local clustering criterion function is 

then integrated with respect to the neighborhood center 

to give a global criterion of image segmentation. In a 

level set formulation, this criterion defines an energy in 

terms of the level set functions that represent a partition 

of the image domain and a bias field that accounts for 

the intensity inhomogeneity of the image. Therefore, by 

minimizing this energy, our method is able to 

simultaneously segment the image and estimate the bias 

field, and the estimated bias field can be used for 

intensity inhomogeneity correction (or bias correction). 

Our method has been validated on synthetic images and 

real images of various modalities, with desirable 

performance in the presence of intensity 

inhomogeneities. Experiments show that our method is 

more robust to initialization, faster and more accurate 

than the well-known piecewise smooth model. As an 

application, our method has been used for segmentation 

and bias correction of magnetic resonance (MR) images 

with promising results. 

KEYWORDSBias correction, image segmentation, 

intensity inhomogeneity, level set, MRI. 

 

I. INTRODUCTION 

Intensity inhomogeneity often occurs in real-world 

imagesdue to various factors, such as spatial 

variations in illumination and imperfections of 

imaging devices, which com plicates many problems 

in image processing and computer vision. 

In particular, image segmentation may be 

considerably difficult for images with intensity 

inhomogeneities due to the overlaps between the 

ranges of the intensities in the regions to segmented. 

This makes it impossible to identify these regions 

based on the pixel intensity. Those widely used 

image segmentation algorithms [4], [17], [18], [23] 

usually rely on intensity homogeneity, and therefore 

are not applicable to images with intensity 

inhomogeneities. In general, intensity inhomogeneity 

has been a challenging difficulty in image 

segmentation. The level set method, originally used 

as numerical technique for tracking interfaces and 

shapes [14], has been increasingly applied to image 

segmentation in the past decade [2], [4], [5], [8]–[12], 

[15]. In the level set method, contours or surfaces are 

represented as the zero level set of a higher 

dimensional function, usually called a level set 

function. With the level set representation, the image 

segmentation problem can be formulated and solved 

in a principled way based on well-established 

mathematical theories, including calculus of 

variations and partial differential equations (PDE). 

An advantage of the level set method is that 
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numerical computations involving curves and 

surfaces can be performed on a fixed Cartesian grid 

without having to parameterize these objects. 

Moreover, the level set method is able to represent 

contours/surfaces with complex topology and change 

their topology in a natural way. Existing level set 

methods for image segmentation can be categorized 

into two major classes: region-based models [4], 

[10], [17], [18], [20], [22] and edge-based models [3], 

[7], [8], [12], [21]. Region-based models aim to 

identify each region of interest by using a certain 

region descriptor to guide the motion of the active 

contour. However, it is very difficult to define a 

region descriptor for images with intensity 

inhomogeneities. Most of region-based models [4], 

[16]–[18] are based on the assumption of intensity 

homogeneity. A typical example is piecewise 

constant (PC) models proposed in [4], [16]–[18]. In 

[20], [22], level set methods are proposed based on a 

general piecewise smooth (PS) formulation originally 

proposed by Mumford and Shah [13]. These methods 

do not assume homogeneity of image intensities, and 

therefore are able to segment images with intensity 

inhomogeneities. However, these methods are 

computationally too expensive and are quite sensitive 

to the initialization of the contour [10], which greatly 

limits their utilities. Edge-based models use edge 

information for image segmentation. These models 

do not assume homogeneity of image intensities, and 

thus can be applied to images with intensity 

inhomogeneities. However, this type of methods are 

in general quite sensitive to the initial conditions and 

often suffer from serious boundary leakage problems 

in images with weak object boundaries. 

In this paper, we propose a novel region-based 

method for image segmentation. From a generally 

accepted model of images with intensity 

inhomogeneities, we derive a local intensity 

clustering property, and therefore define a local 

clustering criterion function for the intensities in a 

neighborhood of each point. This local clustering 

criterion is integrated over the neighborhood center to 

define an energy functional, which is converted to a 

level set formulation. Minimization of this energy is 

achieved by an interleaved process of level set 

evolution and estimation of the bias field. As an 

important application, our method can be used for 

segmentation and bias correction of magnetic 

resonance (MR) images. Note that this paper is an 

extended version of our preliminary work presented 

in our conference paper [9]. 

VARIATIONAL FRAMEWORK FOR JOINT 

SEGMENTATION AND BIAS FIELD 

ESTIMATION 

A. Image Model and Problem Formulation 

In order to deal with intensity inhomogeneities in 

image segmentation, we formulate our method based 

on an image model that describes the composition of 

real-world images, in which intensity inhomogeneity 

is attributed to a component of an image. In this 

paper, we consider the following multiplicative 

model of intensity inhomogeneity. From the physics 

of imaging in a variety of modalities (e.g. camera and 

MRI), an observed image I can be modeled as 

I=bJ+n 

Where J is the true image, b is the component that 

accounts for the intensity inhomogeneity, and is 

additive noise. The component is referred to as a bias 

field (or shading image). The true image J measures 

an intrinsic physical property of the objects being 

imaged, which is therefore assumed to be piecewise 

(approximately) constant. The bias field b is assumed 

to be slowly varying. The additive noise can be 

assumed to be zero-mean Gaussian noise. 

In this paper, we consider the image I as a function 

defined on a continuous domain . The assumptions 

about the true image and the bias field can be stated 

more specifically as follows: 

(A1) The bias field is slowly varying, which implies 

that can be well approximated by a constant in a 

neighborhood of each point in the image domain. 

(A2) The true image J approximately takes N distinct 

constant values  C1,….CN in disjoint regions 

Ω1,…ΩN, respectively,where forms a partition of the 

imagedomain, i.e. and forbased on the model in (3) 

and the assumptions A1 and A2,we propose a method 

to estimate the regions , the constants, and the bias 

field . The obtained estimates ofthem are denoted by , 

the constants , and thebias field , respectively. The 
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obtained bias field should beslowly varying and the 

regions should satisfy certain regularity property to 

avoid spurious segmentation results caused by image 

noise. We will define a criterion for seeking such 

estimates based on the above image model and 

assumptions A1 and A2. This criterion will be 

defined in terms of the regions , constants , and 

function , as an energy in a variational framework, 

which is minimized for finding the optimal regions , 

constants , and bias field . As a result, image 

segmentation and bias field estimation are 

simultaneously accomplished. 

B Local Intensity Clustering Property 

Region-based image segmentation methods typically 

relies on a specific region descriptor (e.g. intensity 

mean or a Gaussian distribution) of the intensities in 

each region to be segmented. However, it is difficult 

to give such a region descriptor for images with 

intensity inhomogeneities. Moreover, intensity 

inhomogeneities often lead to overlap between the 

distributions of the intensities in the regions 

Ω1,…ΩN. Therefore, it is impossible to segment these 

regions directly based on the pixel intensities. 

Nevertheless, the property of local intensities is 

simple, which can be effectively exploited in the 

formulation of our method for image segmentation 

with simultaneous estimation of the bias field. 

 based on the image model in (3) and the assumptions 

A1 and A2, we are able to derive a useful property of 

local intensities, which is referred to as a local 

intensity clustering property as described and 

justified below. To be specific, we consider a circular 

neighborhood with a radius ρ centered at each point 

  defined by 

 . The partition 

 of the entire domain induces a partition of 

the neighborhood , i.e.,  forms a 

partition of . For a slowly varying bias field b , the 

values b(x) for all x in the circular neighborhood are 

close to , i.e. 

 

Thus, the intensities  b(x)J(x) in each subregion 

  are close to the constantb(y)Ci , i.e. 

 

Then, in view of the image model in (3), we have 

 

where  n(x)  is additive zero-mean Gaussian noise. 

Therefore,the intensities in the set 

 

form a cluster with cluster center , which can be 

considered as samples drawn from a Gaussian 

distribution with mean . Obviously, the N clusters , 

are well-separated, with distinct cluster centers , 

(because the constants are distinct and the variance of 

the Gaussian noise is assumed to be relatively small). 

This local intensity clustering property is used to 

formulate the proposed method for image 

segmentation and bias field estimation as follows. 

Energy Formulation 

The above described local intensity clustering 

property indicates that the intensities in the 

neighborhood Oy can be classified into N clusters, 

with centers mi≈ 𝑏(𝑦)Ci ,i=1….N This allows us to 

apply the standard K-means clustering to classify 

these local intensities. Specifically, for the intensities 

I(x) in the neighborhood Oy , the K-means algorithm 

is an iterative process to minimize the clustering 

criterion [19], which can be written in a continuous 

form as 

 

Where mi is the cluster center of the i -th cluster, 

µi(x)=1 is the membership function of the region to 

be determined Since is the membership function of 

the region , we can rewrite as 
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In view of the clustering criterion in (7) and the 

approximation of the cluster center by , we define a 

clustering criterion for classifying the intensities in as 

 

where K(y-x) is introduced as a nonnegative window 

function, also called kernel function, such that K(y-

x)=0.With the window function, the clustering 

criterion function can be rewritten as 

 

This local clustering criterion function is a basic  

element in the formulation of our method. 

EXPERIMENTAL RESULTS 

We first demonstrate our method in the two-phase 

case (i.e N=2). Unless otherwise specified, the 

parameter is set to 4 for the experiments in this 

section. All the other parameters are set to the default 

values mentioned above Fig. 1 shows the results for a 

camera image of limon and a computed tomography 

angiography (CTA) image of blood vessel. The curve 

evolution processes are depicted by showing the 

initial contours (in the left column), intermediate 

contours (in the middle column), 

 

Fig. 1. Segmentation for an image of limon (upper row) and a CT 

image of vessel (lower row). The left, middle, and right columns 

show the initial contours (a triangle for the limon image and a 

quadrangle for the vessel image), the intermediate contours, and 

the final contours, respectively. 

 

and the final contours (in the right column) on the 

images. Intensity inhomogeneities can be clearly seen 

in these two images. Our method is able to provide a 

desirable segmentation result for such images. The 

estimated bias field by our method can be used for 

intensity inhomogeneity correction (or bias 

correction). Given the estimated bias field , the bias 

corrected image is computed as the quotient . To 

demonstrate the effectiveness of our method in 
simultaneous segmentation and bias field estimation, 

we applied it to three medical images with intensity 

inhomogeneities: an MR image of breast, an X-ray 

image of bones, and an ultrasound image of prostate. 

These images exhibit obvious intensity 

inhomogeneities. The ultrasound image is also 

corrupted with serious speckle noise.We applied a 

convolution with a Gaussian kernel to smooth the 

ultrasound image as a preprocessing step. The scale 

parameter of the Gaussian kernel is chosen as 2.0 for 

smoothing this ultrasound image. The initial contours 

are plotted on the original images in Column 1 of Fig. 
2. The corresponding results of segmentation, bias 

field estimation, and bias correction are shown in 

Columns 2, 3, and 4, respectively. These results 

demonstrate desirable performance of our method in 

segmentation and bias correction. 

 

A. Performance Evaluation and Method Comparison 

 

As a level set method, our method provides a contour 

as the segmentation result. Therefore, we use the 

following contour- based metric for precise 
evaluation of the segmentation result. Let C be a 

contour as a segmentation result, and S be the true 

object boundary, which is also given as a contour. 

For each point  p, i=1….N on the contour , we can 

compute the distance from the point Pi to the ground 

truth contour , denoted by . Then, we define the 

deviation from the contour C to the ground truth S by 

 

 
 

 which is referred to as the mean error of the contour 

C . This contour-based metric can be used to evaluate 

a subpixel accuracy of a segmentation result given by 

a contour. 
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Fig. 2.  Applications of our method to an MR image of breast, an 

X-ray image of bones, and an ultrasound image of prostate.  

Column 1: Initial contour on the original image; Column 2: Final 

contours; Column 3: Estimated bias field; Column 4: Bias 

corrected image. 

 
Fig. 3. Robustness of our method to contour initializations is 

demonstrated by its results for an synthetic image in (a) with 

different initial contours. The initial contours (white contours) and 

corresponding segmentation results (black contours) are shown in 

(b–d). 

1) Robustness to Contour Initialization: With the 

above metrics, we are able to quantitatively evaluate 

the performance of our method with different 

initializations and different settings of parameters. 

We applied our method to a synthetic image in Fig. 3 

with 20 different initializations of the contour and the 
constants. For examples, we show three of the 20 

initial contours (white contours) and the 

corresponding results (black contours) in Fig. 3. In 

these three different initializations, the initial contour 

encloses the objects of interest [in Fig. 3(b)], crosses 

the objects [in Fig. 3(c)], and totally inside of one 

object [in Fig. 3(d)]. Despite the great difference of 

these initial contours, the corresponding results are 

almost the same, all accurately capturing the object 

boundaries. The segmentation accuracy is 

quantitatively verified by evaluating these results in 
terms of mean errors. The mean errors of these 

results are all between 0.21 and 0.24 pixel, as shown 

in Fig. 4(a). These experiments demonstrate the 

robustness of our model to contour initialization and 

a desirable accuracy at subpixel level. 

 

2) Stable Performance for Different Scale 

Parameters: We also tested the performance of our 

method with different scale parameters , which is the 

most important parameter in our model. For this 

image, we applied our method with 12 different 

values of from 4 to 15. The corresponding mean 

errors of these 12 results are plotted in Fig. 4(b). 

While the mean error increases as increases, it is 

below 0.5 pixel for all the 12 different values of used 

in this experiment. 

 
Fig. 4. Segmentation accuracy of our method for different 

initializations and different scale parameters 𝜎. (a) Mean errors of 

the results for 20 different initializations; 

(b) Mean errors of the results for 12 different scale parameters 𝜎 

with 𝜎 = 4, 5,6……… 

 

 
 
Fig. 5. Performances of our method and the PS model in different 

imageconditions (e.g. different noise, intensity inhomogeneities, 

and weak object boundaries). Top row: Initial contours plotted on 

the original image; Middle row: Results of our method; Bottom 

row: Results of the PS model. 

 

 
Fig. 6. Comparison of our model and the PS model in terms of 

accuracy and CPU time. (a) Mean errors. (b) CPU times. 
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Comparison With Piecewise Smooth Model 

We can also quantitatively compare our method with 

the PS model on synthetic images. We generated 15 

different images with the same objects, whose 

boundaries are known and used as the ground truth. 

These 15 images are generated by smoothing an ideal 
binary image, adding intensity inhomogeneities of 

different profiles and different levels of noise. Fig. 5 

show three of these images as examples, with the 

corresponding results of our model and the PS model 

in the middle and bottom rows, respectively. We use 

the same initial contour (the circles in the top 

 

 
 

Fig. 7. Applications of our method to 3T MR images. Column 1: 

Original image; Column 2: Final zero level contours of 𝜎1 (red) 

and 𝜎2 (blue), i.e. the segmentation  result; Column 3: Estimated 

bias fields; Column 4: Bias corrected images; Column 5: 

Histograms of the original images (left) and bias corrected images 

(right). 

 

row) for the two models and all the 15 images. It is 

obvious that our model produces more accurate 

segmentation results than the PS model. To 

quantitatively evaluate the accuracy, we compute the 

mean errors of both models for all the 15 images, 

which are plotted in Fig. 6(a), where the -axes 

represent 15 different images. As shown in Fig. 6(a), 

the errors of our model are significantly lower than 
those of the PS model. On the other hand, our model 

is much more efficient than the PS model. This can 

be seen from the CPU times consumed by the two 

models for the 15 images [see Fig. 6(b)]. In this 

experiment, our model is remarkably faster than the 

PS model, with an average speed-up factor 36.43 in 

our implementation. The CPU times in this 

experiment were recorded in running our Matlab 

programs on a Lenovo ThinkPad notebook with Intel 

(R) Core (TM)2 Duo CPU, 2.40 GHz, 2 GB RAM, 

with Matlab 7.4 on Windows Vista. C. Application to 

MR Image Segmentation and Bias Correction In this 
subsection, we focus on the application of the 

proposed method to segmentation and bias correction 

of brain MR images. We first show the results for 3T 

MR images in the first column of Fig. 7. These 

images exhibit obvious intensity inhomogeneities. 

The segmentation results, computed bias fields, bias 

corrected images, are shown in the second, third, and 

fourth column respectively. It can be seen that the 

intensities within each tissue become quite 

homogeneous in the bias corrected images. The 

improvement of the image quality in terms of 

intensity homogeneity can be also demonstrated by 

comparing the histograms of the original images and 
the bias corrected images. The histograms of the 

original images (left) and the bias corrected images 

(right) are plotted in the fifth column. There are three 

well-defined and well-separated peaks in the 

histograms of the bias corrected image, each 

corresponding to a tissue or the background in the 

image. In contrast, the histograms of the 

 

 
Fig. 8. Application to a 7T MR image. (a) Original image; (b) Bias 

corrected image; (c) Computed bias field. 

 

original images do not have such well-separated 

peaks due to the mixture of the intensity distribution 

caused by the bias. Our method has also been tested 

on 7T MR images with promising results. At 7T, 

significant gains in image resolution can be obtained 

due to the increase in signal-to-noise ratio. However, 

susceptibility-induced gradients scale with the main 

field, while the imaging gradients are currently 

limited to essentially the same strengths as used at 
lower field strengths (i.e., 3T). Such effects are most 

pronounced at air/tissue interfaces, as can be seen at 

the base of the frontal lobe in Fig. 8(a). This appears 

as a highly localized and strong bias, which is 

challenging to traditional methods for bias correction. 

The result for this image shows the ability of our 

method to correct such bias, as shown in Fig. 8(b) 

and (c). 

CONCLUSION 

We have presented a variational level set framework 

for segmentation and bias correction of images with 
intensity inhomogeneities. Based on a generally  

accepted model of images with intensity 

inhomogeneities and a derived local intensity 

clustering property, we define an energy of the level 

set functions that represent a partition of the image 

domain and a bias field that accounts for the intensity 

inhomogeneity. Segmentation and bias field 

estimation are therefore jointly performed by 

minimizing the proposed energy functional. The 

slowly varying property of the bias field derived from 
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the proposed energy is naturally ensured by the data  

term in our variational framework, without the need 

to impose an explicit smoothing term on the bias 

field. Our method is much more robust to 

initialization than the piecewise smooth model. 

Experimental results have demonstrated superior 
performance of our method in terms of accuracy, 

efficiency, and robustness. 
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