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Abstract – Spectrum sensing is an essential functionality 

that enables radios to detect spectral holes and to 

opportunistically use the under-utilized frequency bands 

without causing harmful interference to legacy (primary) 

networks. In this paper, the novel optimal multiband 

spectrum sensing framework referred as multiband 

sensing time adaptive joint detection is introduced which 

improves the overall secondary user performance while 

protecting the primary network, keeping the harmful 

interference below a desired low level and protecting the 

spectrum from the malicious attackers. Simulation results 

show that the proposed multiband spectrum sensing 

schemes can considerably improve system performance. 

An efficient iterative algorithm which solves the 

optimization problem with much lower complexity 

compared to other numerical methods is presented. The 

algorithm is evaluated via simulation and is shown to 

obtain the optimal solution in less number of iteration.  

 

Keywords - Cognitive radio, cooperative sensing, 

hypothesis testing, multiband sensing-time-adaptive joint 

detection, optimization, periodic sensing, spectrum 
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I. INTRODUCTION 

 

RADITIONAL wireless networks are regulated by 

fixed (static) spectrum allocation policies to operate in 

certain time frames, over certain frequency bands, and 

within certain geographical regions. This regulation results in 

situations in which some radio bands are overcrowded while 

other bands remain moderately or rarely occupied. Over time, 

due to the ever-growing need for wireless communications 

and lack of unlicensed frequency resources, this fixed 

spectrum assignment policy has led to the spectrum scarcity 

problem. In order to realize efficient spectrum utilization, the 

static spectrum access must be replaced by dynamic spectrum 

access (DSA) [1]. The key technology behind the dynamic 

spectrum access is cognitive radio (CR), which has recently 

been proposed to revolutionize the wireless communication 

systems [2]. Since a cognitive radio network is designed to be 

aware of its surroundings, monitoring the primary user 

activities and sensing the spectrum is a critical task which  

must be accomplished. Also because of the dynamic nature of 

CR, the network is more vulnerable to be compromised. One 

serious threat is the primary user emulation attack (PUEA), in 

which the attacker sends out signal similar to that of primary 

users during the spectrum sensing period such that the 

secondary users will not use the spectrum even if there is no 

primary user. In order to utilize the available spectrum 

efficiently such type of issues must be avoided. 

   Effective spectrum sensing needs to identify suitable 

transmission opportunities without compromising the integrity 

of the primary network [3]. Generally, spectrum sensing 

techniques can be classified into three broad categories: 

energy detection [4], matched filtering (coherent) detection 

[5], and cyclostationary feature detection [6]. Energy detection 

has been shown to be optimal if the cognitive devices have no 

a priori information about the features of the primary signals 

except local noise statistics [7]. Since energy detection is 

simple and able to determine spectrum-occupancy information 

quickly, it is adopted as the building block for constructing the 

proposed wideband spectrum sensing framework.  

 

A.   Related Work 

 

  All of the above mentioned spectrum sensing strategies 

has been previously restricted to sensing narrowband 

channels. So there are limited prior works, when it comes to 

wide-band spectrum sensing. An early approach was to have a 

tunable narrowband band pass filter to sense a number of 

channels, one at a time [9]. In [10], [11], the authors have 

suggested using a wavelet transformation for sensing different 

frequency bands simultaneously. However, none of the 

aforementioned strategies have considered sensing multiple 

narrowband channels jointly, which is essential for 

implementing a most effective secondary network. 

Consequently, through a different approach, a novel 

“multiband joint detection” (MJD) framework for wideband 

sensing was proposed in [12] where the decisions are jointly 

made over multiple frequency bands.  

  More specifically, in the MJD framework [12], a bank of 

multiple narrowband detectors are optimized to improve the 

aggregate opportunistic throughput of a cognitive radio 

system while limiting the interference to the primary 

communication system. It is important to sense the channel 

periodically in order to vacate spectrum when a primary user 

T 
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reappears [13] - [17], however this feature is missing in the 

MJD framework. In addition, due to the wireless channel 

fluctuations and fading effects, it is essential to dynamically 

balance the quality and speed of sensing through an adaptive 

selection of the sensing time, which is assumed to be fixed in 

MJD. 

 

B.   Proposed Work 

 

   The major contribution of this work is three folds. First, 

for wideband spectrum sensing, an optimal framework is 

presented, known as multiband sensing-time-adaptive joint 

detection (MSJD). By adding periodic sensing to the system 

used in [12] and considering the aforementioned design 

concerns, the opportunistic throughput of secondary user can 

be maximized while keeping the interference to primary user 

to a reasonably low level.    

Second, an efficient algorithm which computes the 

optimal sensing parameters quickly within the MSJD 

framework is proposed. Generally speaking, this paper 

demonstrates a practical and useful platform for designing a 

wideband spectrum sensing framework, as well as an efficient 

algorithm for the framework whose implementation is 

remarkably time and cost-effective. 

 Third, authorization of access is considered in the system 

for the security purpose. Each node has to supply access code 

before accessing the spectrum which is only known to the 

authentic nodes and the system. Only nodes with the valid 

access code are allowed to use the available spectrum 

    The remainder of the paper is organized as follows. In 

section II, the basic system models are presented. In section 

III, the wideband spectrum sensing framework is introduced. 

The theoretical results are given in section IV leading to the 

presentation of the proposed algorithm for solving the given 

framework in section V. In Section VI, authentication system 

is presented. Numerically evaluation of the framework and the 

algorithm are presented in section VII and finally conclusions 

are drawn in Section VIII. 

 

II. CHANNEL SENSING 

 

In this section, the general model for channel sensing and the 

periodic sensing model are presented. 

 

A. System Model 

 

Consider a primary communication system (e.g., 

multicarrier modulation based) operating over a wideband 

channel that is divided into N non overlapping narrowband 

sub bands and assume that J no. of primary user share this 

spectrum [12]. 

The detection problem on sub band N is modeled using 

binary hypothesis testing in which selection between a 

hypothesis H0,k (“0”), which represents the absence of primary 

signals, and an alternative hypothesis H1,k (“1”), which 

represents the presence of primary signals is done.  

 

B. Periodic Sensing  

 

Once a secondary user detects an opportunity for transmission  

 it may tune its transmission parameters to access the channel. 

Yet, it should continue sensing the spectrum every τ seconds 

in order to vacate the channel if the primary user reappears. 

This is due to the fact that sensing a channel and transmitting 

in the same channel cannot be done simultaneously. The 

sensing period τ determines the maximum time that the 

secondary user disregards the primary user activity and may 

impose harmful interference on the legacy network. Therefore, 

the choice of τ forces a delay on the primary transmission and 

hence a degradation of the quality of service (QoS). On the 

other hand, a larger value of τ increases the secondary 

system’s opportunity to access the underutilized spectrum. 

The selection of τ should depend on the type of the primary 

service and should be set by the regulator.  

Fig. 1 represents the frame structure considered for the 

periodic spectrum sensing. Each frame consists of one sensing 

slot τ and one data transmission slot T − τ. For a given sensing 

time τ, the number of samples used for sensing of one sub 

channel is M = τfs where fs is the sensing sampling frequency 

in all sub channels. 
 

 
 

 

 
 

 

 
Fig. 1. Periodic spectrum sensing. 

  

III. MULTIBAND JOINT DETECTION 
 

In this section, the multiband sensing-time-adaptive joint 

detection framework is proposed, within which the detection 

thresholds  and the sensing time τ will be found. 

 

A. Problem Formulation 

  

For the single primary user case, J=1. The objective of the 

proposed joint spectrum sensing framework is to jointly 

optimize the threshold vector ɛ and the sensing time τ so as to 

maximize the available throughput of the secondary user 

while keeping the weighted interference with primary users 

below a desired level. Mathematically, the optimization 

problem can be stated as 

 

              max.  R(ε,τ)                                                            (P1) 

               ε,τ              

              s.t.   Ij(ε,τ) ≤ ξj,      j=1………..N                            (1) 

                      

                    Pm (ε,τ) ≤ αk,      k=1……..N                                (2) 

       Pf (ε,τ) ≤ βk,       k=1…..…N                                (3) 
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where R is available throughput[18], αk and βk are the 

minimum requirements of each sub channel and ξ is 

maximum tolerable aggregate interference on primary 

network. 

 In order to make the analysis easier, the problem is 

reformulate as 

 

                min. Rmiss(ε,τ)                                                       (P2)                 

ε,τ              

where,  

                 Rmiss(ε,τ) = r[Pf(ε,τ)(1- τ/T)+τ/T]                          (4) 

 is the opportunistic data rate loss due to inherent sensing 

impairment. 

 

B. Convex Optimization 

 

In general, it is difficult to find the global solution for problem 

(P2) since both objective and constraint functions are non 

convex, so a suboptimal solution is indicated for many cases. 

However, it is observed that this problem can be considered in 

the convex optimization category under some practical 

conditions [18]. Consequently, following results can be 

presented to take advantage of the convexity of (P2). From 

[18] and [19], the constraints of problem (P2) are convex 

given as  

                            0 ≤ αk ≤ Q (1/√3)                                      (5a) 

                            0 ≤ βk ≤ Q (1/√3)                                      (5b) 

for k=1,2…..N. Although the constraints are shown to be 

convex, the objective function is still non convex. To prove 

the convexity of the objective function, we use the following 

result [18] 

                      τ/T ≤ 0.5                                                           (6) 

Under the conditions in (5) and (6), both the objective and 

constraint functions are convex, which implies that finding the 

global maximum is possible. Hence, some efficient numerical 

algorithms such as the interior-point methods [19] can be used 

to find the optimal solution. 

 

IV. THEORETICAL ANALYSIS 

 

In this section, some analytical results for solving the original 

problem (P1) are presented. The results are further exploited 

for presentation of the low-complexity algorithm. 

 

A. Constant τ 

 

Here, the case where τ is a predetermined value and unrelated 

to the optimization process is considered. Thus, the original 

problem (P1) can be simplified as 

 

 
       s.t   Ij(ɛ) ≤ ξj,        j = 1,…….J                                         (7) 

 

       ɛk,min ≤ ɛk ≤ ɛk,max, k = 1,2…..N                                       (8)   

 

where,  

 
 

is the max detection threshold and 

 

 
is the minimum tolerable threshold value. Note that the main 

difference between (P2) and (P3) is that the nonlinear 

constraints (2) and (3) are transformed to the linear constraint 

(8). In [12], it has been shown that the problem (P3) is a 

convex optimization problem. Therefore, it is possible to find 

the global optimal solution using numerical methods such as 

the interior-point methods. However, an iterative algorithm is 

proposed which computes the optimal threshold vector in less 

number of iterations. 

 

B. Dual Problem 

 

In order to further explore the optimization problem (P3), the 

advantage of the Lagrangian duality properties are exploited, 

presented in [19]. The Lagrangian of the problem (P2) is 

defined as 

 
L(ɛ,λ1,λ2,λ3)=rTPf(ɛ)+ λ1 (I(ɛ)-ξ)+ λ2

T(ɛ - ɛmax)+λ3
T (-ɛ + ɛmin)                                                                           

                                                                                               

(11) 

where λ1,λ2 = [λ2
(1)

,…,λ2
(N)

] and λ3 = [λ3
(1)

,…,λ3
(N)

] are 

nonnegative Lagrangian dual variables associated with the 

constraint function. Accordingly, the Lagrangian dual function 

is defined as 

             g(λ1,λ2,λ3) = inf. L(ɛ,λ1,λ2,λ3)                                  (12) 

                                   ɛ 

Recall that the dual function is a lower bound on the optimal 

solution of (P3), p’, which is achieved by the primal optimal 

variable ɛ’. Consequently, the dual optimization problem is 

defined as  

 

               max. g(λ1,λ2,λ3) 

               s.t. λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0                                         (13) 

which is formulated to reduce the gap between the optimal 

solution p’ and the Lagrangian function g(λ1,λ2,λ3). Denote the 

optimal solution of the dual problem (13) as d’ which is 

achievable by the optimal dual variables λ1,λ2 and λ3 i.e. d’= 

g(λ1,λ2,λ3). Since the original problem (P3) is convex and 

Slater’s condition is satisfied, strong duality holds for this 

problem which means that the duality gap p’- d’ is zero [19] 

and consequently, any primal and dual optimal variables ɛ’, 

λ1,λ2 and λ3 must satisfy the Karush- Kuhn- Tucker(KKT) 

conditions[18]. On the other hand, given the fact that the 

primal problem is convex, satisfying the KKT conditions is 

sufficient for finding the primal and dual optimal points. That 
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is, any primal and dual variables ɛ’, λ’1,λ’2 and λ’3 set which 

satisfies the KKT conditions 

I(ɛ’) ≤ ξ                                                                              (14a) 

ɛk,min ≤ ɛ’ ≤  ɛk,max, k = 1,2,…..,N                                       (14b) 

λ1’ ≥ 0, λ2’ ≥ 0, λ3’ ≥ 0                                                       (14c) 

λ1’ (I(ɛ’) - ξ) = 0                                                                 (14d) 

λ2’
(k)

( ɛ’k- ɛk,max) = 0, k = 1,2,…….,N                                (14e) 

λ3’
(k)

(-ɛ’k+ ɛk,min) = 0, k = 1,2,…….,N                                (14f) 

∇L (ɛ’, λ’1, λ’2, λ’3) = 0                                                     (14g) 

is the optimal solution and results in zero duality gap. 

Generally, there is no conventional method for solving KKT 

conditions and only a few special cases result in a closed-form 

solution. In our problem, since the KKT conditions (14a) and 

(14g) are nonlinear equations, finding a closed-form solution 

is extremely difficult and thus, a numerical algorithm is 

indicated. 

 

V. LOW COMPLEXITY ALGORITHM 

 

In this section, first, assuming that the sensing time τ is 

constant which restricts the multiband joint detection 

framework, we present an efficient algorithm for calculating 

the optimal threshold vector ɛ. Then, taking advantage of the 

algorithm, we propose another efficient algorithm for solving 

the original multiband sensing-time-adaptive joint detection 

framework in which ɛ and τ are both optimization variables. 

 

A. Multiband Joint Detection 

 

Here, the aim is to find the optimal primal and dual 

parameters ɛ’, λ’1, λ’2 and λ’3 by satisfying the KKT 

conditions given in (14). It is assumed that (14b) is valid even 

if the equality is removed. This assumption may not be 

generally valid and some of the thresholds must assume the 

boundary values in order to satisfy all the KKT conditions. 

However, for the interim, the results are presented based on 

the aforementioned assumption and the boundary thresholds 

are dealt in [18]. Based on above assumptions and after few 

substitutions and simplifications [18], the expression for 

detection threshold ɛ’k  can be written as 

 

 
  

    

which is a closed-form function of . Having such a function 

enables us to substitute (15) into the KKT condition (14a) and  

obtain the optimal . Note that (14a) is an equality condition 

and can easily be solved using various fast and efficient 

numerical root-finding methods such as the Newton-Raphson 

method, fixed point iteration method, etc. Once  is obtained, 

the detection thresholds { }N
k=1 are accordingly obtained. 

 

B. Multiband Sensing-Timing-Adaptive Joint Detection 

 

In this section, an algorithm which computes the optimal 

detection threshold vector ɛ and sensing time τ as given in 

(P2) is presented. The basic idea is that, instead of jointly 

optimizing the optimization variables, they are optimized in a 

disjoint two-stage algorithm. In the first stage of the 

algorithm, the sensing time τ is assumed as a constant value. 

Therefore, the original problem is reformulated as the one 

stated in (P3). In the second stage, the sensing time τ based on 

the information obtained from the previous stage is updated. 

Iteration is used in the algorithm in order to refine the 

information used in each stage. 

Some information from the previous stage is needed to 

implement stage 2. For this purpose specifically probabilities 

of missed detection is exploited. There are four main 

parameters which are effective in determining probabilities of 

missed detection Pm(ɛ,τ). These parameters are the achievable 

throughput rk, the interference cost ck, the channel SNR γk and 

the sensing time τ. This is an intuitive result which can be 

easily extracted from the objective and constraint functions in 

the problem (P1). 

It is observed that the parameters are channel dependent 

value and can vary in each sub channel but the sensing time τ 

is a global value and is the same in each sub channel. 

Therefore, it can intuitively conclude that the channel 

depended parameters are more effective in determining 

sensing time τ. On the other hand, it is seen that these so 

called channel-dependent parameters are fixed values and 

depend only on the system model. Thus, the computed missed 

detection probabilities in the first stage will remain almost 

unchanged even if the sensing time τ changes in the next 

iteration. This information is used to implement the second 

stage of the algorithm. Accordingly, in the second stage, the 

probabilities of missed detection are assumed to be fixed at 

the values P’m
(k)

 obtained from the first stage. Thus, the 

probability of false alarm can be written as 

 

 
Accordingly, the optimization problem is converted to  

 

  

   

     s.t         Pf(τ) ≤ β                                                              (17) 

which has been proved to be convex if 0 ≤ βk ≤ 0.5. Since the 

only optimization variable is τ, the problem can be rewritten 

as 

                 min. Rmiss(τ)                                                        (P5) 
                            τ 
             s.t. τ ≥ argmax{ τ

(1)
 min, τ 

(2)
min,…., τ 

(N)
min}            (18) 

in which, 
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is the minimum required sensing time at sub channel obtained 

from (16). The optimization problem (P5) can easily be solved 

by taking the derivative of the objective function and setting it 

to zero in order to obtain the optimal value of τ. The 

calculated value of τ is the optimal solution if it satisfies 

constraint (18), otherwise the boundary value given in (18) is 

chosen. After solving the problem (P5), the first stage is 

repeated based on the updated value of τ until the solution is 

accurate enough. However, required numbers of iterations are 

very small.  

 

 

VI. AUTHENTICATION SYSTEM 

 

The dynamical spectrum access mechanism, particularly the 

spectrum sensing mechanism, in CR also incurs vulnerabilities 

for the communication system. One serious threat is the 

primary user emulation attack (PUEA), in which the attacker 

sends out signal similar to that of primary users during the 

spectrum sensing period such that the secondary users will not 

use the spectrum even if there is no primary user, since it is 

difficult to distinguish the signals from primary users and the 

attacker. 
 

 

Fig. 2. Primary Emulation Attack (PUEA) [21] 
 

 To prevent such issues, secret access codes are being 

shared between authentic nodes and the system via secured 

channel using any existing cryptography techniques. Only 

nodes with valid access code are allowed to use the spectrum 

whereas others are rejected.  

 

VII. SIMULATION RESULTS 

 

In this section, computer simulation results are presented to 

verify the effectiveness of our proposed work. Consider a 

single primary user communication (i.e., J = 1) over a wide 

band spectrum where the wideband channel is equally divided 

into six sub bands. For each sub band k, we assume an 

achievable throughput rate rk if used by CRs and a cost 

coefficient ck indicating the penalty if the primary signal is 

interfered with by secondary users, also γk, denote the received 

SNR. Furthermore, in each sub channel k, we assume a 

minimum primary user protection level of 90%, i.e., αk = 

0.1and an opportunity detection margin of βk = 0.2.   For 

simplicity it is assumed that the noise power level is σ
2

v = 1 

and the maximum time for which the secondary network is 

unaware of the primary activity (i.e.T) is chosen such that fsT 

= 3000.  

 

 

 

k 1 2 3 4 5 6 

γk, 0.21 1.30 2.52 3.24 4.35 5.271 

rk(kbps) 207 306 485 600 711 808 

ck 3.94 5.68 6.81 7.91 9.01 10.07 

 

Table 1: Parameter set used for simulation 

 

 
 
Fig. 3. The available opportunistic throughput for cognitive radio transmission 

versus the aggregate interference to the primary network 

 

A. Example 1: Multiband Sensing-Time-Adaptive Joint 

Detection Framework 

 

In this example, multiband sensing-time adaptive joint 

detection (MSJD) framework is evaluated. To make a fair 

comparison, two schemes are considered here. First, a 

multiband joint detection (MJD) framework [12] with the 

same constraints and the number of samples M = τfs =150 is 

examined. Recall that the MJD framework maximizes                                                                                                                        

the available secondary throughput by a joint optimization of 
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the detection thresholds. Second, an algorithm which searches 

uniform thresholds to maximize the available throughput 

within the same framework is studied. In order to evaluate the 

performance, the simulation parameters are randomly 

generated like in [18] such as the channel condition, 

opportunistic throughput, and interference cost. One typical 

parameter set used for simulation is given in Table 1. 

 Fig. 3 plots the maximum available throughput for 

cognitive radio transmission versus the aggregate interference 

in the primary network. It is evident in the figure that our 

proposed framework achieves a performance superior to the 

other approaches. Two main observations are notable here. 

First, other than the detection thresholds, the sensing time is a 

critical parameter which should be dynamically assigned due 

to the channel fluctuations and fading effects. Second, in order 

to adjust a intelligent tradeoff between the available 

throughput and interference to the primary user, we need a 

unified approach which optimizes all of these parameters. 

These considerations are well adopted in the framework. 

 

 
 
Fig. 4. The available opportunistic throughput for cognitive radio transmission 

versus the initial number of samples defined in Algorithm. 
 

 

B. Example 2: Low Complexity Wideband Sensing 

Algorithm 

 

This example studies the low-complexity algorithms which 

are proposed for solving both the MSJD and MJD framework 

where the detection threshold vector ɛ is optimized when the 

sensing time τ is a predetermined value which better suits the 

MJD framework. Considering the design concerns presented 

in the MSJD framework, an efficient iterative algorithm is 

developed which computes the optimal values of both the 

detection threshold vector ɛ and sensing time τ. 

 Fig. 3 plots the maximum available throughput for 

cognitive radio transmission versus the aggregate interference 

in the primary network. As depicted in the figure, the optimal 

solutions can easily be achieved by the proposed algorithms. It 

should also be noted that only two iterations are used for 

implementing Algorithm which verifies that the required 

number of iterations is very small. In fig 4, the maximum 

available throughput for the cognitive transmission is plotted 

versus the initial number of samples (initial sensing time) 

given in Algorithm. It is evident in the figure that it is 

obtained the optimal solution by running at most two 

iterations. This is another validation of the small number of 

iterations required using Algorithm. 

 

 

C. Example 3: Authentication System 

 

This example studies the authentication system to prevent 

primary user emulation attack (PUEA) [20]. In order to utilize 

the spectrum as primary user, every node has to come up with 

correct access code. Those nodes that are able to provide 

correct codes are given chance to access the available 

spectrum. In fig. 5 only node at slot 1 and 3 are able to 

provide correct access code and hence allowed to utilize the 

spectrum. 
  
 

Fig.5. Power spectral density of spectrum with primary users  
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Fig.6. Power spectral density of spectrum after inserting secondary users 

 

 

in respective slots. All other nodes at remaining slots are not 

able to provide correct access code and hence are rejected. So 

slot 2, 4 and 5 are empty slots and available for secondary 

user opportunistically transmission. Now when secondary 

users come to utilize available spectrum then it is allotted 

available empty slots in first come first serve basis. In fig. 7, 

slot 2 is assigned to newly arrive secondary user.  

 

VIII. CONCLUSION 

 

In this paper, optimal multiband sensing-time-adaptive joint 

detection (MSJD) framework was proposed for wideband 

spectrum sensing in CR networks. The basic strategy was to 

take into account the detection of primary users jointly across 

a bank of narrowband sub bands rather than considering only 

one single band at a time. The joint detection problem was 

formulated into a class of optimization problems to improve 

the spectral efficiency and reduce the interference. By 

exploiting the hidden convexity in the seemingly non convex 

problem formulations, the optimal solution was obtained 

under practical conditions. Moreover, an algorithm was 

proposed which solved the formulated optimization problem 

in less no of iteration. The proposed spectrum sensing 

algorithms have been examined numerically and have been 

shown to perform well. Also with the addition of the 

authorization of access in the system, the spectrum can be 

protected from the malicious intruders.  
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