
 

Viney et al. / IJAIR  Vol.2  Issue 7  ISSN: 2278-7844 

© 2013 IJAIR. ALL RIGHTS RESERVED   179 

 

Verification IP for Interconnect Verification 
Viney Malik

1
, Rajesh Mehra

1
, Surender Ahlawat

2 

1 
ECE Department, Sector – 26, NITTTR, Chandigarh, India 

2 
Mentor Graphics, Noida, India 

 

Abstract - Verifying complex interconnects is always a real 

challenge as same environment should be reused at the system 

level as well as block level. In this article we will take an example 

for verifying OCP based interconnects but same approach can be 

moved forward to verify other protocol based Interconnects also. 

 
 Keywords - TLM – Transaction level modelling, OCP – Open 

Core Protocol, OVM – Open verification methodology, GPIO – 

General purpose IO  

I. INTRODUCTION 

The Open Core Protocol [4] defines a high-performance, 

bus-independent interface between IP cores that reduces 

design time, design risk, and manufacturing costs for SOC 

designs. The Open Core Protocol:  
 

 Achieves the goal of IP design 

reuse. The OCP transforms IP cores making  them 

independent of the architecture and design of the 

systems in which they are used  
 

 Optimizes die area by configuring 

into the OCP only those features needed by the 

communicating cores  
 

 Simplifies system verification and testing by 

providing a firm boundary around each IP core 

that can be observed, controlled, and validated. 

 

OCP verification IP allows a complete Open Verification 

Methodology (OVM) compliant OCP system to be 

constructed where master and slave devices can 

communicate using transactions or signals. The OCP 

verification IP includes OVM components to translate 

between the OVM transactions and the OCP signals for OCP 

master and slave devices. The OVM transactions can be 

randomized with protocol coverage collected by the 

verification IP. The OCP verification IP also includes a set of 

stimulus tasks the user can use to create a test or device that 

issues OCP OVM transactions. OCP verification IP reduces 

the time taken to design and test any system. 

 

Open Verification Methodology (OVM) [1] is a verification 

methodology that presented the development of verification 

environments targeted at verifying large IP-based SoCs. 

Verification productivity supports the ability to develop 

individual verification components quickly, encapsulate them 

into larger reusable verification components, and reuse them 

in different configurations and at different levels of 

abstraction. OVM supports “bottom-up” reuse by allowing 

block-level components and environments to be encapsulated 

and reused as blocks that can be composed into a system [2] 

[3].  

 

There are few scenarios where verification components will 

be used while verifying Interconnect based system, like, to 

verify stand alone interconnect when no master/slave cores are 

ready, to verify individual master/slave cores, to verify 

interconnect when few master/slave cores are ready, to gather 

the TLM activity at all the interfaces for transaction 

displaying/functional coverage/transaction logging when all 

the master/slave RTL cores are connected with Interconnect  

i.e. verification component working in Passive mode. 

II. INTERCONNECT VERIFICATION PROBLEM 

While defining the architecture it must be taken care that an 

exhaustive test suits can be generated, functional coverage 

must be collected at all the interfaces, protocol compliance 

checks must be there at all the interfaces and most important it 

must be easy to reuse this environment at the system level 

when one have its master/slave cores ready. 

This can be easily achieved with OCP verification IP, which 

works at any multiple abstraction levels, one only needs to 

replace TLM level master / slave with RTL master / slave 

once cores are ready. Verification IP is system verilog based 

OVM compliant verification component and it supports latest 

version of OVM [5] – [7]. 

III.   PROPOSED ENVIRONMENT 

To verify Interconnect like above, verification IP can be used 

at each interface which will give following features: 

 

1) As OCP is highly configurable and each interface 

might 

have different configuration e.g it might be possible that 

burst is supported at master1 but not at master2, 

verification IP OCP master will generate the constraint 

random stimulus depending on how the interface is 

configured as there might be address mappings so 

master can be constrained to generate only legal address 

range 

 

2) Functional coverage will be collected at each interface  

         level. 

 



 

Viney et al. / IJAIR  Vol.2  Issue 7  ISSN: 2278-7844 

© 2013 IJAIR. ALL RIGHTS RESERVED   180 

 

3) Verification IP with XML verification plan can be 

used 

 along with Questa Verification Management feature to  

         automatically track the final coverage with respect to           

         XML verification plan. 

 

4)     Protocol checker will be instantiated at each interface so  

         that if any illegal behaviour is observed assertion is   

         fired transaction level display in waveform as well in  

         log file. 

 

The classic interconnect verification challenge is depicted in 

the block diagram as shown below: 

 

         
 

Fig.1 Shows a 6 Master 6 Slave OCP Interconnect 

 

Now to replace single MASTER Interface, following 

architecture will replacing OCP Master<n> in Fig.1 

 

            

 

 
Fig. 2 OCP verification IP as Master 

         

 Now to replace single SLAVE Interface, following 

architecture will replacing OCP Slave<n> in Fig.1 

       

 
                    

Fig. 3 OCP verification IP as Slave 

Now with using OCP verification IP Master and OCP 

verification IP Slave, interconnect verification environment 

would become. 

            

 
 
Fig. 4 OCP interconnect environment where OCP verification IP 

MASTER<n> corresponds to Fig 2 and OCP verification IP SLAVE <n> 

corresponds to Fig3 



 

Viney et al. / IJAIR  Vol.2  Issue 7  ISSN: 2278-7844 

© 2013 IJAIR. ALL RIGHTS RESERVED   181 

 

 

Once tests are run then functional coverage can be saved 

and it can be merged with XML provided verification to 

view how far one have gone in their verification goals As 

masters and slave cores gets ready they can be first verified 

individually using verification IP as shown in Fig 2 and Fig 

3, then they can be hooked up in current verification 

environment of Interconnect by replacing TLM master/TLM 

slave with RTL master/slave core. 

 

Rest other TLM component can be replaced later e.g if 

Master1 was CPU block and Master2 was DMA and Slave1 

was GPIO block then after doing their block level 

verification with verification IPs as explained above they 

can replace OCP TLM master and OCP TLM Slave in 

figure2 and figure3, figure 2 and 3 will now become figure 

6 for OCP verification IP MASTER1, OCP verification IP 

MASTER2 and OCP verification IP SLAVE1. 

 

          

 
 
Fig.5 OCP interconnect environment where OCP verification IP 

MASTER<n> corresponds to Fig 2 and OCP verification IP SLAVE <n> 

corresponds to Fig3 

As soon as all the master and slaves are created and they are 

verified they will be replacing OCP TLM Master and OCP 

TLM Slave in verification IP, but still same environment will 

be reused to verify the Interconnect based system with 

verification IPs. 

 



 

Viney et al. / IJAIR  Vol.2  Issue 7  ISSN: 2278-7844 

© 2013 IJAIR. ALL RIGHTS RESERVED   182 

 

    
  

Fig.6 Verification IP hooked up to collect coverage from interface. 

IV. CONCLUSIONS 

To verify a block or a system, environment must be created 

which can be easily moved from block to system level 

Verification components used must have a protocol 

compliance checking mechanism which should be measured 

precisely Verification components must have a functional 

coverage mechanism along with detailed verification plan so 

that verification progress can be tracked  

Verification IP comes with all the above features and also it 

can work at any abstraction level which makes much easy to 

move from one abstraction level to another As analysis 

components (functional coverage) is a system verilog based 

unencrypted component so it can be changed depending on 

the needs in case if a block supports only subset of complete 

protocol 

REFERENCES 

[1] Mark Glasser“Open Verification Methodology Cookbook” 1st 

edition Springer, 2009 

 

[2] “OVM Golden Reference Guide”, version2.0, Doulos, 2008. 
 

[3] Open Verification Methodology, download from 
www.ovmworld.org 

 

[4] Open Chip Protocol specifications ver. 2.1.  
 

 
 

[5] Chris Spears, “System Verilog for Verification”, 2nd ed., Springer, 

2008. 
 

[6] Writing test benches using system verilog, Janick Bergeron 
 

[7] Reuse Methodology manual, Second Edition, Keating 

 


