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Abstract— Edge-preserving denoising is of great 

interest in image processing. This paper presents a 

wavelet-based multiscale products thresholding 

scheme for noise suppression of the images. A dyadic 

wavelet transform (A Canny edge detector-) is also 

employed. In the result we can see that the with the 

decay in noise rapidly it evolve the high magnitude 

across wavelet scale. To take advantage of the 

wavelet interscale dependencies we multiply the 

adjacent wavelet sub bands to enhance edge structures 

while weakening noise. In the multiscale products, 

edges can be effectively distinguished from noise.  

An adaptive scale correlation wavelet thresholding 

technique is then proposed. In which the adaptive 

threshold is calculated which is imposed on the 

products, instead of on the wavelet coefficients. This 

proposed scheme suppresses the noise effectively and 

preserves the edges features than other wavelet-

thresholding denoising methods. In the result we can 

see the better visual quality and increment in the 

signal to noise the last node will die in the network is 

to be discussed. In which round ratio as compare to 

the traditional technique.  
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1.1Introduction To Wavelets And 

Wavelet Transforms 
Wavelets are used to transform the signal under 

investigation into another representation which 

presents the signal information in a more useful 

form. When working with signals, the signal 

itself can be difficult to interpret. Therefore the 

signal must be decomposed or transformed in 

order to see what the signal actually represents. 

The continuous wavelet transform is the most 

general wavelet transform. The problem is that a 

continuous wavelet transform operates with a 

continuous signal, but since a computer is digital, 

it can only do computations on discrete signals. 

The discrete wavelet transform has been 

developed to accomplish a wavelet transform on 

a computer. 

  Wavelets and wavelet transforms are used to analyze        

signals. The transformed signal is a decomposed     

version of the original signal, and can be converted 

back to the original signal. No information is lost in 

the process. When studying a musical tone, one of the 

features that is interesting is the frequency. The 

frequency for a clean A is 440Hz, see top plot in 

Figure 1.1. To determine the frequency of the signal 

one must measure the period of each wave, and 

calculate the frequency. The period of one wave is the 

time it takes from it is at one point in the wave, until it 

reaches the same position again. For example the time 

between two wave tops.  
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  Figure 1.1: A sine wave at 440 Hz, and its Fourier 

transform 

Using different transforms, the signal can be  

transformed into other representations. For this 

example, instead of having amplitude as a function of 

time, it would be better to have the amplitude as a 

function of frequency. This can be done by using the 

Fourier transform. Once one knows what frequencies 

are present, one can easily determine which tones the 

signal consists of, in the case of a musical signal. The 

bottom part of Figure 1.1 shows that it is easy to 

determine that the signal in the upper part of Figure 

1.1 actually is an A when you perform the Fourier 

transform. Wavelet transforms can do the same, but 

they can also tell you when the tone A appeared in 

time, effectively giving you amplitude, time and 

frequency, all in one. 

 

 

 

 
Figure 1.2: A noise input signal, and 

corresponding Fourier transform. 
 

 

 

 

 

 
 

                       Figure 1.3: Wavelet Transform Plot 

1.2 Present  Work: 

 It was analyzed that previous traditional thresholding 

techniques are not giving satisfactory result for image 

denoising. Disadvantage of this technique is that the 

SNR ratio decreases with the increase in image size 

and this technique is time variant. So we proposed a 

new method named Scale Correlation Wavelet 

thresholding method with the help of 2D dyadic 

wavelet. Advantage of  2D dydaic wavelet is that it is 

time invariant , also changes only scale parameter. So 

using this, an adaptive wavelet can be designed to 

enhance instantaneous feature of the image. 

A New sure approach to Image Denoising: Interscale 

Orthonormal Wavelet Thresholding beyond the point 

wise approach, more recent investigations have shown 

that substantially larger denoising gains can be 

obtained by considering the intra- and interscale 

correlations of the wavelet coefficients. In addition, 

increasing the redundancy of the wavelet transform is 

strongly beneficial to the denoising performance. We 

have selected three such techniques reflecting the 
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state-of-the-art in wavelet denoising, against which 

we will compare our results. 

 

Figure4.1-Principle of wavelet denoising. 

 

   1.3   Proposed Work: 

In “Adaptive Wavelet Thresholding for Image 

Denoising and Compression” On a seemingly 

unrelated front, lossy compression has been proposed 

for denoising in several works [6], [5], [21], [25], 

[28]. Other works [4], [12]–[16] also addressed the 

connection between compression and denoising. 

STEPS INVOLVED IN THIS WORK 

In this paper, an adaptive scale correlation wavelet 

thresholding technique is promoted over traditional 

wavelet thresholding. For this paper the following 

steps are involve- 

1. Taking original image 

2. Calculate original SNR from the image 

3. Create a noisy image. 

4. 2D dyanic wavelet transform 

5. Compute the coefficient of correlation. 

6. Do the traditional thresholding on the image. 

7.  Calculate the SNR after traditional 

thresholding 

8. Apply the scale correlation thresholding on the 

image now. 

9. Calculate the SNR after scale correlation 

thresholding. 

10. Measure the effect of use of scale correlation 

thresholding over traditional thresholding. 

  

1.6 RESULTS AND DISCUSION 

In this section, the performances by the proposed 

scheme on some INPUT images are compared with 

the traditional wavelets thresholding technique. We 

made a comparison by using parameter i.e. signal to 

noise ratio and visual quality. 

(a). VISUAL QUALITY : When we compare these 

techniques on the basis of visual quality the result is 

very clear that adaptive scale correlation wavelet 

thresholding technique give the best quality picture in 

the result. Figure (1.4) show the original image which 

is further made noisy by adding the random  

 

Figure 1.4 : ORIGINAL IMAGE 

 

Figure 1.5 : NOISY IMAGE 

Noise in the input image figure(1.5). Then after this 

by applying the traditional wavelet thresholding the 

output image is shown in figure(1.6). 
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Figure 1.6 : Image After Traditional Wavelet 

Thresholding 

 

Figure 1.7 : Image after SCALE CORRELATION 

WAVELET THRESHOLDING 

 

Finally the figure (1.7) show the result of adaptive 

scale correlated wavelet thresholding image from 

where it is clear that the image quality is far better in 

this case as compare to traditional wavelet 

thresholding. 

(b) SIGNAL TO NOISE RATIO: We calculated the 

value of signal to noise ratio at three different point 

though which we can compare the both technique. 

The signal to noise ratio for the input or we can say 

original image is  

  snr_o =    14.3144 dB 

Then apply the traditional wavelet thresholding and 

calculate the signal to noise ratio, which is 

snr_ft =   23.5478 dB 

The value for signal to noise ratio after adaptive scale 

correlation wavelet thresholding is 

snr_f =   24.7967 dB 

From the above calculated value for signal to noise 

ratio we can conclude that the scale correlation 

wavelet thresholding technique give the best result 

over traditional wavelets thresholding. 

 

1.4 Conclusion And Future Scope 

This paper proposes an image denoising scheme using 

an adaptive scale correlation wavelet thresholding 

technique. Unlike traditional schemes that directly 

threshold the wavelet coefficients, the proposed 

scheme multiplies the adjacent wavelet subbands to 

amplify the significant features and then applies the 

thresholding to the multiscale products to better 

differentiate edge structures from noise. The 

distribution of the products was analyzed and an 

adaptive threshold was formulated to remove most of 

the noise. Experiments on the input images show that 

the proposed scheme not only achieves high SNR and 

VISUAL QUALITY measurements but also preserves 

more edge features. 

By this adaptive scale correlation wavelet 

thresholding technique we get high quality of image 

and better value for the signal to noise ratio. This can 

be used in the medical images because edge features 

preserving nature. We can also design the further 

effective technique by forwarding this for getting 

more clear visuality and better in signal to noise ratio. 

By getting more correctively threshold value get the 

better in the output which is further beneficial in 

many areas.   
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