
Ravipati et al. / IJAIR Vol. 2 Issue 7 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED ` 97

A Two Level Intrusion Detection over

Multi-Tier Web: Double Guard

Ravipati Ramu
#1

, Samsani Surekha
*2

Department of Computer Science & Engineering,

University College Of Engineering,Vizianagaram ,JNTUK

Vizianagaram Dist,AP,India.

Abstract

Many software systems have evolved to

include a Web-based component that makes them

available to the public via the Internet and can

expose them to a variety of Web-based attacks. One

of these attacks is SQL injection, which can give

attackers unrestricted access to the databases that

underlie Web applications and has become

increasingly frequent and serious. This paper

presents a new highly automated approach for

protecting Web applications against SQL injection

that has both conceptual and practical advantages

over most existing techniques A Combinational

approach for protecting web applications against

SQL Injection is discussed in this paper, which is a

new idea of incorporating the uniqueness of

signature based method and auditing method. From

signature based method stand point of view, it

presents a detection mode for SQL-Injection using a

pair wise sequence alignment of amino acid code

formulated from web applications from parameter

sent via web server. On the other hand from auditing

based method standpoint of view, it analyzes the

transaction to find out the malicious access. In

Signature based method it uses an approach called

Hirschberg algorithm, it is a divide and conquer

approach to reduce the time and space complexity.

This system was able to stop all of the successful

attacks and did not generate any false positives.

Keywords
 Security, SQL injection, Hirschberg

Algorithm, DBMSAuditing

1. Introduction

 WEB applications are applications that

can be accessed over the Internet by using any

compliant Web browser that runs on any operating

system and architecture. They have become

ubiquitous due to the convenience, flexibility,

availability, and interoperability that they provide.

Unfortunately, Web applications are also vulnerable

to a variety of new security threats. SQL Injection

Attacks (SQLIAs) are one of the most significant of

such threats [1]. SQLIAs have become increasingly

frequent and pose very serious security risks because

they can give attackers unrestricted access to the

databases that underlie Web applications.

Today's modem web era, expects the

organization to concentrate more on web application

security. This is the major challenge faced by all the

organization to protect their precious data against

malicious access or corruptions. Generally the

program developers show keen interest in

developing the application with usability rather than

Incorporating security policy rules. Input validation

issue is a security issue if an attacker finds that an

application makes unfounded assumptions about the

type, length, format, or range of input data. In this

paper, we propose a new highly automated approach

for dynamic detection and prevention of SQLIAs.

Intuitively, our approach works by identifying

―trusted‖ strings in an application and allowing only

these trusted strings to be used to create the

semantically relevant parts of a SQL query such as

keywords or operators. The general mechanism that

we use to implement this approach is based on

dynamic tainting, which marks and tracks certain

data in a program at runtime.

Ravipati et al. / IJAIR Vol. 2 Issue 7 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED ` 98

2. Motivation: SQL Injection

Attacks

In this section, we first motivate our work

by introducing an example of an SQLIA that we use

throughout the paper to illustrate our approach and,

then, we discuss the main types of SQLIAs in detail.

In general, SQLIAs are a class of code injection

attacks that take advantage of the lack of validation

of user input. These attacks occur when developers

combine hard-coded strings with user-provided

input to create dynamic queries. Intuitively, if user

input is not properly validated, attackers may be able

to change the developer’s intended SQL command

by inserting new SQL keywords or operators

through specially crafted input strings. Interesed

readers can refer to the work of Su and Wassermann

[2] for a formal definition of SQLIAs. SQLIAs

leverage a wide range of mechanisms and input

channels to inject malicious commands into a

vulnerable application [3]. Before providing a

detailed discussion of these various mechanisms, we

introduce an example application that contains a

simple SQL injection vulnerability and show how an

attacker can leverage that vulnerability. Fig. 1 shows

an example of a typical Web application

architecture. In the example, the user interacts with a

Web form that takes a login name and pin as inputs

and submits them to a Web server. The Web server

passes the user supplied credentials to a servlet

(show.jsp), which is a special type of Java

application that runs on a Web application server

and whose execution is triggered by the submission

of a URL from a client.

The example servlet, whose code is

partially shown in Fig. 2, implements a login

functionality that we can find in a typical Web

application. It uses input parameters login and pin to

dynamically build an SQL query or command. (For

simplicity, in the rest of this paper, we use the terms

query and command interchangeably.) The login and

pin are checked against the credentials stored in the

database. If they match, the corresponding user’s

account information is returned. Otherwise, a null

set is returned by the database and the authentication

fails. The servlet then uses the response from the

database to generate HTML pages that are sent back

to the user’s browser by the Web server. For this

servlet, if a user submits login and pin as ―doe ―and

―123‖ the application dynamically builds the query:

If login and pin match the corresponding

entry in the database, doe’s account information is

returned and then displayed by function

displayAccount(). If there is no match in the

database, function sendAuthFailed() displays an

appropriate error message. An application that uses

this servlet is vulnerable to SQLIAs. For example, if

an attacker enters ―admin’ –– ‖ as the username and

any value as the pin (for example, ―0‖), the resulting

query is

In SQL, ―--‖ is the comment operator and

everything after it is ignored. Therefore, when

performing this query, the database simply searches

for an entry where login is equal to admin and

returns that database record. After the ―successful‖

login, the function displayAccount () reveals the

admin’s account information to the attacker. It is

important to stress that this example represents an

extremely simple kind of attack and we present it for

illustrative purposes only. Because simple attacks of

this kind are widely used in the literature as

examples, they are often mistakenly viewed as the

only types of SQLIAs. In reality, there is a wide

variety of complex and sophisticated SQL exploits

available to attackers. We next discuss the main

types of such attacks.

Ravipati et al. / IJAIR Vol. 2 Issue 7 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED ` 99

Fig. 2. Excerpt of a Java servlet implementation.

2.1. Tautologies

Tautology-based attacks are among the

simplest and best known types of SQLIAs. The

general goal of a tautology based attack is to inject

SQL tokens that cause the query’s conditional

statement to always evaluate to true. Although the

results of this type of attack are application specific,

the most common uses are bypassing authentication

pages and extracting data. In this type of injection,

an attacker exploits a vulnerable input field that is

used in the query’s WHERE conditional. This

conditional logic is evaluated as the database scans

each row in the table. If the conditional represents a

tautology, the database matches and returns all of

the rows in the table as opposed to matching only

one row, as it would normally do in the absence of

injection. An example of a tautology-based SQLIA

for the servlet in our example in Section 2 is the

following:

Because the WHERE clause is always

true, this query will return account information

for all of the users in the database.

2.1.1 Union Queries

Although tautology-based attacks can be successful,

for instance, in bypassing authentication pages, they

do not give attackers much flexibility in retrieving

specific information from a database. Union queries

are a more sophisticated type of SQLIA that can be

used by an attacker to achieve this goal, in that they

cause otherwise legitimate queries to return

additional data. In this type of SQLIA, attackers

inject a statement of the form ―UNION < injected

query >.‖ By suitably defining <injected query >,

attackers can retrieve information from a specified

table. The outcome of this attack is that the database

returns a data set that is the union of the results of

the original query with the results of the injected

query. In our example, an attacker could perform a

Union Query injection by injecting the text “ „ 0

UNION SELECT cardNo from CreditCards

where acctNo ==7032 -- ” into the login field. The

application would then produce the following query:

The original query should return the null

set, and the injected query returns data from the

―CreditCards‖ table. In this case, the database

returns field ―cardNo‖ for account ―7032.‖ The

database takes the results of these two queries,

unites them, and returns them to the application. In

many applications, the effect of this attack would be

that the value for ―cardNo‖ is displayed with the

account information.

2.1.3 Piggybacked Queries

Similar to union queries, this kind of attack appends

additional queries to the original query string. If the

attack is successful, the database receives and

executes a query string that contains multiple

distinct queries. The first query is generally the

original legitimate query whereas subsequent

queries are the injected malicious queries. This type

of attack can be especially harmful because attackers

can use it to inject virtually any type of SQL

command. In our example, an attacker could inject

the text ―0; drop table users‖ into the pin input field

Ravipati et al. / IJAIR Vol. 2 Issue 7 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED ` 100

and have the application generate the following

query:

The database treats this query string as

two queries separated by the query delimiter (―;‖)

and executes both. The second malicious query

causes the database to drop the users table in the

database, which would have the catastrophic

consequence of deleting all user information. Other

types of queries can be executed using this

technique, such as the insertion of new users into the

database or the execution of stored procedures. Note

that many databases do not require a special

character to separate distinct queries, so simply

scanning for separators is not an effective way to

prevent this attack technique.

3. SQL Injection Attack Types

There are different methods of attacks that

depending on the goal of attacker are performed

together or sequentially. For a successful SQLIA the

attacker should append a syntactically correct

command to the original SQL query. Now the

following classification of SQLIAs in accordance to

the Halfond, Viegas, and Orso researches [4, 5] are

presented.

Tautologies:
 This type of attack injects SQL tokens to

the conditional query statement to be evaluated

always true. This type of attack used to bypass

authentication control and access to data by

exploiting vulnerable input field which use WHERE

Clause

"SELECT * FROM employee WHERE userid = „112‟

and password ='aaa' OR '1'='1'"

As the tautology statement (l = 1) has been added to

the query statement so it is always true.

IIIegal/Logically Incorrect Queries:

When a query is rejected, an error message

is returned from the database including useful

debugging information. This error messages help

attacker to find vulnerable parameters in the

application and consequently database of the

application. In fact attacker injects junk input or

SQL tokens in query to produce syntax error, type

mismatches, or logical errors by purpose. In this

example attacker makes a type mismatch error by

injecting the following text into the pin input field:

1) Original URL:

http://www .arch.polimLitieventil?id _

nav=8864

2) SQL Injection:

http://www.arch.polimi.itleventil?id

nav=8864'

3) Error message showed:

SELECT name FROM Employee

WHERE id =8864\'

From the message error we can fmd out name of

table and fields: name; Employee; id. By the gained

information attacker can organize more strict

attacks.

Union Query:
By this technique, attackers join injected

query to the safe query by the word UNION and

then can get data about other tables from the

application. Suppose for our examples that the query

executed from the server is the following:

 SELECT Name, Phone FROM Users

WHERE Id=$id

By injecting the following Id value:

$id= 1 UNION ALL SELECT

creditCardNumber, 1 FROM CreditCarTable

http://www.arch.polimi.itleventil/?id

Ravipati et al. / IJAIR Vol. 2 Issue 7 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED ` 101

We will have the following query:

SELECT Name, Phone FROM Users WHERE

Id= 1

UNION ALL SELECT creditCardNumber, 1

FROM CreditCarTable

Which will join the result of the original query with

all the credit card users.

4. Our Approach

Our approach against SQLIAs is based on

dynamic tainting, which has previously been used to

address security problems related to input validation.

Traditional dynamic tainting approaches mark

certain untrusted data (typically user input) as

tainted, track the flow of tainted data at runtime, and

prevent this data from being used in potentially

harmful ways. Our approach makes several

conceptual and practical improvements over

traditional dynamic tainting approaches by taking

advantage of the characteristics of SQLIAs and Web

applications. First, unlike existing dynamic tainting

techniques, our approach is based on the novel

concept of positive tainting, that is, the identification

and marking of trusted, instead of untrusted, data.

Second, our approach performs accurate and

efficient taint propagation by precisely tracking trust

markings at the character level. Third, it performs

syntax-aware evaluation of query strings before they

are sent to the database and blocks all queries whose

nonliteral parts (that is, SQL keywords and

operators) contain one or more characters without

trust markings. Finally, our approach has minimal

deployment requirements, which makes it both

practical and portable. The following sections

discuss these key features of our approach in detail.

4.1 Positive Tainting

Positive tainting differs from traditional

tainting (hereafter, negative tainting) because it is

based on the identification, marking, and tracking of

trusted, rather than untrusted, data. This conceptual

difference has significant implications for the

effectiveness of our approach, in that it helps

address problems caused by incompleteness in the

identification of relevant data to be marked.

Incompleteness, which is one of the major

challenges when implementing a security technique

based on dynamic tainting, has very different

consequences in negative and positive tainting. In

the case of negative tainting, incompleteness leads to

trusting data that should not be trusted and,

ultimately, to false negatives. Incompleteness may

thus leave the application vulnerable to attacks and

can be very difficult to detect, even after attacks

actually occur, because they may go completely

unnoticed. With positive tainting, incompleteness

may lead to false positives, but it would never result

in an SQLIA escaping detection. Moreover, as

explained in the following, the false positives

generated by our approach, if any, are likely to be

detected and easily eliminated early during

prerelease testing. Positive tainting uses a white-list,

rather than a black-list, policy and follows the

general principle of fail-safe defaults, as outlined by

Saltzer and Schroeder [6]: In case of

incompleteness, positive tainting fails in a way that

maintains the security of the system. Fig. 3 shows a

graphical depiction of this fundamental difference

between negative and positive tainting.

In the context of preventing SQLIAs, the

conceptual advantages of positive tainting are

especially significant. The way in which Web

applications create SQL commands makes the

identification of all untrusted data especially

problematic and, most importantly, the identification

of most trusted data relatively straightforward. Web

applications are deployed in many different

configurations and interface with a wide range of

external systems. Therefore, there are often

many potential external untrusted sources of input to

be considered for these applications, and

enumerating all of them is inherently difficult and

error prone. For example, developers initially

assumed that only direct user input needed to be

marked as tainted. Subsequent exploits

demonstrated that additional input sources such as

browser cookies and uploaded files also needed to

be considered. However, accounting for these

additional input sources did not completely solve the

problem either. Attackers soon realized the

possibility of leveraging local server variables and

the database itself as injection sources [7]. In

general, it is difficult to guarantee that all potentially

harmful data sources have been considered and even

Ravipati et al. / IJAIR Vol. 2 Issue 7 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED ` 102

 Fig. 3. Identification of trusted and untrusted data.

a single unidentified source could leave the

application vulnerable to attacks. The situation is

different for positive tainting because identifying

trusted data in a Web application is often

straightforward and always less error prone. In fact,

in most cases, strings hard-coded in the application

by developers represent the complete set of trusted

data for a Web application.1 This is because it is

common practice for developers to build SQL

commands by combining hardcoded strings that

contain SQL keywords or operators with user-

provided numeric or string literals. For Web

applications developed this way, our approach

accurately and automatically identifies all SQLIAs

and generates no false positives. Our basic approach,

as explained in the following sections, automatically

marks as trusted all hard-coded strings in the code

and then ensures that all SQL keywords and

operators are built using trusted data. In some cases,

this basic approach is not enough because

developers can also use external query fragments—

partial SQL commands that come from external

input sources—to build queries. Because these string

fragments are not hardcoded in the application, they

would not be part of the initial set of trusted data

identified by our approach and the approach would

generate false positives when the string fragments

are used in a query. To account for these cases, our

technique provides developers with a mechanism for

specifying sources of external data that should be

trusted. The data sources can be of various types

such as files, network connections, and server

variables.

4.2 Character-level Tainting

We track taint information at the character

level rather than at the string level. We do this

because, for building SQL queries, strings are

constantly broken into substrings, manipulated, and

combined. By associating taint information to single

characters, our approach can precisely model the

effect of these string operations. Another alternative

would be to trace taint data at the bit level, which

would allow us to account for situations where

string data are manipulated as character values using

bitwise operators. However, operating at the bit

level would make the approach considerably more

expensive and complex to implement and deploy.

Most importantly, our experience with Web

applications shows that working at a finer level of

granularity than a character would not yield any

benefit in terms of effectiveness. Strings are

typically manipulated using methods provided by

string library classes and we have not encountered

any case of query strings that are manipulated at the

bit level.

4.3 Syntax-Aware Evaluation

Aside from ensuring that taint markings are

correctly created and maintained during execution,

our approach must be able to use the taint markings

to distinguish legitimate from malicious queries.

Simply forbidding the use of untrusted data in SQL

commands is not a viable solution because it would

flag any query that contains user input as an SQLIA,

leading to many false positives. To address this

shortcoming, researchers have introduced the

concept of declassification, which permits the use of

tainted input as long as it has been processed by a

sanitizing function. (A sanitizing function is

typically a filter that performs operations such as

regular expression matching or substring

Ravipati et al. / IJAIR Vol. 2 Issue 7 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED ` 103

replacement.) The idea of declassification is based

on the assumption that sanitizing functions are able

to eliminate or neutralize harmful parts of the input

and make the data safe. However, in practice, there

is no guarantee that the checks performed by a

sanitizing function are adequate. Tainting

approaches based on declassification could therefore

generate false negatives if they mark as trusted

supposedly sanitized data that is actually still

harmful. Moreover, these approaches may also

generate false positives in cases where unsanitized

but perfectly legal input is used within a query.

Syntax-aware evaluation does not rely on any

(potentially unsafe) assumptions about the

effectiveness of sanitizing functions used by

developers. It also allows for the use of untrusted

input data in a SQL query as long as the use of such

data does not cause an SQLIA. The key feature of

syntaxaware evaluation is that it considers the

context in which trusted and untrusted data is used

to make sure that all parts of a query other than

string or numeric literals (for example, SQL

keywords and operators) consist only of trusted

characters. As long as untrusted data is confined to

literals, we are guaranteed that no SQLIA can be

performed. Conversely, if this property is not

satisfied (for example, if a SQL operator contains

characters that are not marked as trusted), we can

assume that the operator has been injected by an

attacker and identify the query as an attack. Our

technique performs syntax-aware evaluation of a

query string immediately before the string is sent to

the database to be executed. To evaluate the query

string, the technique first uses a SQL parser to break

the string into a sequence of tokens that correspond

to SQL keywords, operators, and literals. The

technique then iterates through the tokens and

checks whether tokens (that is, substrings) other

than literals contain only trusted data. If all such

tokens pass this check, the query is considered safe

and is allowed to execute. If an attack is detected, a

developer specified action can be invoked. As

discussed in Section 4.1, this approach can also

handle cases where developers use external query

fragments to build SQL commands. In these cases,

developers would specify which external data

sources must be trusted, and our technique would

mark and treat data that comes from these sources

accordingly. This default approach, which 1)

considers only two kinds of data (trusted and

untrusted) and 2) allows only trusted data to form

SQL keywords and operators, is adequate for most

Web applications. For example, it can handle

applications where parts of a query are stored in

external files or database records that were created

by the developers. Nevertheless, to provide greater

flexibility and support a wide range of development

practices, our technique also allows developers to

associate custom trust markings to different data

sources and provide custom trust policies that

specify the legal ways in which data with certain

trust markings can be used. Trust policies are

functions that take as input a sequence of SQL

tokens and perform some type of check based on the

trust markings associated with the tokens.

BUGZILLA [8] (http://www.bugzilla.org) is an

example of a Web application for which developers

might wish to specify a custom trust marking and

policy. In BUGZILLA, parts of queries used within

the application are retrieved from a database when

needed. Of particular concern to developers in this

scenario is the potential for second-order injection

attacks [9] (that is, attacks that inject into a database

malicious strings that result in an SQLIA only when

they are later retrieved and used to build SQL

queries). In the case of BUGZILLA, the only

subqueries that should originate in the database are

specific predicates that form a query’s WHERE

clause. Using our technique, developers could first

create a custom trust marking and associate it with

the database’s data source. Then, they could define a

custom trust policy that specifies that data with such

a custom trust marking is legal only if it matches a

specific pattern, such as ,when applied to subqueries

that originate in the database, this policy would

allow them to be used only to build conditional

clauses that involve the id or severity fields and

whose parts are connected using the AND or OR

keywords.

5. Conclusion

This paper presented a novel highly

automated approach for protecting Web applications

from SQLIAs. Our approach consists of 1)

identifying trusted data sources and marking data

coming from these sources as trusted, 2) using

dynamic tainting to track trusted data at runtime, and

3) allowing only trusted data to form the

Ravipati et al. / IJAIR Vol. 2 Issue 7 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED ` 104

semantically relevant parts of queries such as SQL

keywords and operators. Unlike previous approaches

based on dynamic tainting, our technique is based on

positive tainting, which explicitly identifies trusted

(rather than untrusted) data in a program. This way,

we eliminate the problem of false negatives that may

result from the incomplete identification of all

untrusted data sources. False positives, although

possible in some cases, can typically be easily

eliminated during testing. Our approach also

provides practical advantages over the many existing

techniques whose application requires customized

and complex runtime environments: It is defined at

the application level, requires no modification of the

runtime system, and imposes a low execution

overhead.

6. References

[1] ―Top Ten Most Critical Web Application

Vulnerabilities,‖ OWASP Foundation,
http://www.owasp.org/documentation/ topten.html, 2005.

[2] Z. Su and G. Wassermann, ―The Essence of Command
Injection Attacks in Web Applications.,‖ Proc.

Symp.Principles of Programming Languages, pp. 372-382,

Jan. 2006.

[3] W.G. Halfond, J. Viegas, and A. Orso, ―A

Classification of SQLInjection Attacks and
Countermeasures,‖ Proc. IEEE Int’l Symp. Secure

Software Eng., Mar. 2006.

[4] MUSIC: Mutation-based SQL Injection Vulnerability

Checking by Hossain Shahriar and Mohammad
Zulkernine, The Eighth International Conference on

Quality Software, IEEE- 2008

[5]. SBSQLID: Securing Web Applications with Service

Based SQL Injection Detection by

Shri.V.Shanmughaneethi, Smt. C.Emilin Shyni,

Dr.S.Swamynathan, 2009 International Conference on

Advances in Computing, Control, and Telecommunication

Technologies.

[6] J. Saltzer and M. Schroeder, ―The Protection of

Information in Computer Systems,‖ Proc. Fourth ACM
Symp. Operating System Principles, Oct. 1973.

[7] C. Anley, ―Advanced SQL Injection In SQL Server
Applications,‖ white paper, Next Generation Security

Software, 2002.

[8] BUGZILLA (http://www.bugzilla.org).

[9] V. Haldar, D. Chandra, and M. Franz, ―Dynamic Taint
Propagation for Java,‖ Proc. 21st Ann. Computer Security

Applications Conf., pp. 303-311, Dec. 2005.

7. About the Authors

Ravipati Ramu is currently

pursuing his M.Tech in

Computer Science &

Engineering at University

College of Engineering,

Vizianagaram JNTUK. His

area of interests includes

Network Security.

Samsani Surekha is

currently working as an

Assistant Professor in

Computer Science and

Engineering department,

JNTUK University College

of Engineering, VZM Dist.

Her research interests include Networks,

Security, and Data Mining.

http://www.bugzilla.org/

