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Abstract: Visual matching could be a crucial step in image 

retrieval supported the bag-of-words (Bow) model. Within the 

baseline technique, 2 key points are thought of as an identical 

try if their SIFT descriptors are amount to identical visual 

word. However, the SIFT visual word has 2 limitations. First, it 

loses most of its discriminative power throughout division. 

Second, SIFT solely describes the native texture feature. Each 

drawbacks impair the discriminative power of the Bow model 

and result in false positive matches. To tackle this downside, 

multiple binary options are embedded at assortment level. To 

model correlation between options, a multi-IDF scheme [8] is 

introduced, through that completely different binary options 

are coupled into the inverted file. Matching verification 

methods [5] are supported binary options. The joint 

integration of the SIFT visual word and binary options greatly 

enhances the preciseness of visual matching, reducing the 

impact of false positive matches. The planned technique 

considerably improves the baseline approach. Additionally, 

massive scale experiments indicate that the planned technique 

needs acceptable memory usage and question time compared 

with alternative approaches.   

    

 Index terms:  SIFT, CN Descriptor, Hamming Embedded, 

Multi-IDF, image retrieval.  
 

 

1.    INTRODUCTION 

 

This paper focuses on the task of enormous scale partial 

duplicate image retrieval. Given a question image, our target 

is to seek out pictures containing constant options in an 

exceedingly massive info in real time. a picture retrieval 

system could be a computing system for browsing, looking 

and retrieving pictures from an outsized info of digital 

pictures. Most ancient and customary ways of image 

retrieval utilize some technique of adding data such as 

captioning, keywords, or descriptions to the pictures so 

retrieval will be performed over the annotation words. 

One of the foremost well-liked approaches to perform such a 

task is that the Bag-of-Words (BoW) model. The 

introduction of the SIFT descriptor has enabled correct 

partial-duplicate image retrieval supported feature matching. 

Specifically, the BoW model 1st constructs a codebook via 

unattended bunch algorithms. Then, a picture is depicted as 

a bar graph of visual words, created by feature division. 

Every bin of the bar graph is weighted with tf-idf score or its 

variants. With the inverted file arrangement, pictures area 

unit indexed for economical retrieval. 

Essentially, one key issue of the BoW model involves visual 

word matching between pictures. Accurate feature matching 

ends up in high image retrieval performance. However, 2 

drawbacks compromise this procedure. First, in 

quantization, a 128-D double SIFT feature is quantal to a 

single integer [2]. The discriminative power of SIFT feature 

is basically lost. Options that lie off from one another may 

very well comprise an equivalent cell, so manufacturing 

false positive matches. Second, the progressive systems 

accept the SIFT descriptor, that solely describes the native 

gradient distribution, with rare description of alternative 

characteristics, like color, of this native region [4]. As a 

result, regions that area unit similar in texture area however 

totally different in color area might also be thought-about as 

a real match. Each drawbacks cause false positive matches 

and impair the image retrieval accuracy. Therefore, it's 

undesirable to require visual word index because the solely 

price tag to visual matching. Typically, the binary options 

area unit extracted alongside SIFTS, and embedded into the 

inverted file [6]. The explanation why binary feature will be 

used for matching verification is two-fold. First, compared 

with floating-point vectors of an equivalent length, binary 

options consume a lot of less memory. As an example, for a 

128-D vector, it takes 512 bytes and sixteen bytes for the 

floating-point and binary options, severally. Second, 

throughout matching verification, the playing distance 

between 2 binary options will be expeditiously calculated 

via xor operations, whereas the Euclidian distance between 

floating-point vectors is extremely dear to figure. Previous 

work of this line includes playing Embedding (HE) [3] and 

its variants that use binary SIFT options for verification. 

Meanwhile, binary options additionally embody abstraction 

context, heterogeneous feature. 

In lightweight of the effectiveness of binary 

options, this paper proposes to refine visual matching via the 

embedding of multiple binary options. On one hand, binary 

options give complementary clues to build the 

discriminative power of SIFT visual word. On the opposite 

hand, during this feature fusion method, binary options are 

coupled by links derived from a virtual multi-index 

structure. During this structure, SIFT visual word and 

different binary options are combined at categorization level 

by taking every feature joined dimension of the virtual 

multi-index. Therefore, the image retrieval method votes for 

candidate pictures not solely similar in native texture 

feature, however conjointly consistent in different feature 

areas. With the thought of multi-index, a unique IDF theme, 

referred to as multi-IDF, is introduced. We have a tendency 

to show that binary feature verification strategies like 

performing Embedding [5], will be effectively incorporated 

in our framework. Moreover, we have a tendency to extend 

the planned framework by embedding binary color feature. 

                 This paper argues that feature fusion by coupled 

binary feature embedding considerably enhances the 

Discriminative power of SIFT visual word [5]. First, SIFT 

binary feature retains a lot of info from the first feature, 

providing effective check for visual word matching. Second, 
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color binary feature offers complementary clues to SIFT 

feature. Each aspects serve to enhance feature matching 

accuracy. Intensive experiments on totally different class 

image retrieval datasets make sure that the planned 

methodology dramatically improves image retrieval 

accuracy.

 
 

 

Fig.1   System Design 

 

3. SYSTEM DESIGN 

 

     The following above Fig 1 illustrate the design of the 

system for retrieving similar features images.  

 

The system has two modules  

 

(1) SIFT (Scale Invariant Feature Transform) 

       (2)  CN Descriptor  

 

A.  Module 1  

 

   This module is used to extracting the features 

from an image. SIFT extracts image features that are stable 

over image translation, rotation and scaling and somewhat 

invariant to changes in the illumination and camera 

viewpoint. The SIFT algorithm has four major phases, 

1) Extrema Detection,  

2) Keypoint Localization, 

3) Orientation Assignment, 

4) Keypoint Descriptor Generation.  

The first section, Extrema Detection, examines the 

image beneath numerous scales and octaves to isolate points 

of the image that are totally different from their 

surroundings. These points, known as extrema, are potential 

candidates for image options. 

The next section, Key point Detection, starts with the 

extrema and selects a number of these points to be key 

points that are a whittled down a group of feature 

candidates. This refinement rejects extrema that are caused 

by edges of the image and by low distinction points. 

The third section, Orientation Assignment, converts 

every key point and its neighborhood into a group of vectors 

by computing a magnitude and a direction for them.  

The last section, Key point Descriptor Generation, takes 

a set of vectors within the neighborhood of every key point 

and consolidates this info into a group of eight vectors 

known as the descriptor. every descriptor is regenerate into a 

feature by computing a normalized total of those vectors. 

 

1) Scale-Space Extrema Detection 

 This is the primary section of the SIFT algorithm 

[8]. Here the formula identifies the points that square 

measure stable with relevance image rotation, translation 

and people that square measure minimally stricken by noise 

and little distortions. Detective work these points may be 

accomplished by checking out stable options across all 

attainable scales. The formula computes “scale,” “difference 

of Gaussian’s, and “extrema” over many “octaves.”  

Scale: 

Let I be an N × N image and for 0 ≤ x, y < N, let 

 be the discrete two-

dimensional Gaussian function. Then the scale of the image 

I is defined as 

 

where * is the two-dimensional convolution operation and 

I(x, y) is the pixel at row x and column y of image I(x, y). In 

general, the  scale of the image, for k≥ 1 is defined as 

For each image point I(x, y), the scale is computed by 

applying a scalar product between the point I(x, y) and a 

w×w Gaussian weighted window placed over that point.  

 In general for a w × w window with odd w, the 

image points located around the point I(x, y) are I(x + u, y + 

v) Where .  Here the scale of I(x, y) 

is 

 

Let σ0be the initial value of σ in the Gaussian filter. 

Define  for 0 ≤i < s + 3.Let be the 

original image (the superscript is explained later 

 

Octaves 

The sequence of scales is called an octave. as 

part of the first octave. This is a blurred image from the 

original image I. The next step requires a reduction in image 

resolution. The resolution of an image can be reduced1 by a 

factor of 2 in each dimension by sampling every other pixel 

of the image in a checkerboard pattern. Let be  

reduced in resolution by a factor of 2 (the superscript j here 

denotes Octave 1 for and Octave 0 for ). 

We now define a new octave (second octave) 

analogous to the Octave 0. 
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If there are octaves, then in general for , 

 is  reduced in resolution by a factor of 2 in each 

dimension and 

 

 

The time complexity for computing all (s + 3) scales of the 

image over one octave is and repeating 

this for  octaves gives a time complexity of 

where the down 

sampling needed to start each octave requires another 

operations. Therefore the overall complexity of this 

phase is . Considering constants and unit time 

for all operations, this phase requires approximately 

time. 

 

Difference of Gaussians 

 At this point, we have (s + 3) scales over all 

octaves where and . For any 

fixed octave j and , define the i
th 

difference 

of Gaussians over octave j as: 

 

Where the difference is for each pair of corresponding 

and  .The scales in octave j are ×  

images. Then each of  and is an ×   image and so 

computing requires finding differences.  

 

 
 

Fig 2 Scale, octaves and difference of Gaussians 

In the above Fig 2 shows that difference of two 

scale-space images in single octaves. The same process is 

repeated till three octaves.  

The complexity to compute this quantity across all 

octaves is . With normally 

used values of SIFT parameters, the number of operations is 

approximately . 

 

 

Extrema Detection 

Suppose that we have the sets , ,  of 

difference of Gaussian images in an octave j. For each 

octave j where  and for , place 

the difference of gaussians , , in three adjacent 

layers. Now element  has 26 neighboring 

difference of Gaussian elements. Element  is an 

extremum iff it is strictly larger (in pixel value) than all of 

the neighboring elements. Detecting whether  is an 

extremum takes at most 26 comparisons each requiring 

constant time. For all elements of  in an octave j, the time 

needed is . For all difference of Gaussians over all 

octaves, the time needed . 

Before we proceed to the next phase (Keypoint 

Detection), we touch upon how the Scale-space Extrema 

Detection phase is executed. However each of these (scales, 

difference of Gaussians, extrema) has relatively local 

dependencies. That is, to determine the scale of a point, one 

needs to know only the w×w neighborhood of the point. To 

determine the difference of Gaussian, we only need two 

corresponding points and to check whether a point is 

extremum, we only need 26 differences of Gaussians points 

spread over three scales around it. Thus, it is possible to 

execute these operations over octaves in many different 

ways. The original algorithm of Lowe uses the structure. 

The program we used for this work uses the modified flow 

of algorithm. 

 

2) Keypoint Detection 

Recall that the algorithm first determines αN2extrema 

and then further distills them into αβN2 keypoints that will 

ultimately become keypoints of the image. The Scale-Space 

Extrema Detection phase of the algorithm identifies αN2 

potential candidates for keypoints. Some of these candidates 

may lie along an edge of the image or may correspond to 

points of low contrast. These are generally not useful as 

features as they are unstable over image variation. Hence 

these points are rejected. For rejecting low contrast points, 

each extremum is examined using a method that involves 

solving a system of 3×3 linear equations and so it takes 

constant time. To detect the extrema on edges, a 2 × 2 

matrix is generated and simple computations performed on 

it, to generate a ratio of principle of curvatures. This 

quantity is simply compared with a threshold value to decide 

whether an extremum is to be rejected or not. Thus, this 

phase runs in time over all octaves. Considering constants 

into the account this phase takes approximately   operations. 

After the elimination of extrema points, the points that 

remain are called keypoints. Now nominally have key 

points. 

 

3) Orientation Assignment 

The nominal number of key points at the start of 

this phase is . This phase adds to the set of keypoints 

(those that may be missed in the previous phases) on the 

basis of their magnitude and orientation. The magnitude 
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and orientation for each point 

can be calculated as follows: 

 

 
 

Non-keypoint points whose magnitudes are close to the peak 

magnitude are added as new keypoints. The number of 

points examined is as α andβ are small 

fractions. Of these, a fraction are added back. Thus, the total 

number of keypoints at the end of this phase is 

again because is a small fraction. Clearly the computation 

for and can be done over constant time. 

The overall complexity for all points over all octaves 

is . Considering the constants, the number of 

operations is approximately  

 

4) Keypoint Descriptor Generation 

In this phase, the algorithm computes a descriptor 

for each keypoint identified so far. The descriptor is a 

collection of information in an 2x × 2x Neighborhood of the 

keypoint. The following tasks are undertaken for each Key 

point. 

 

• The magnitudes of all the points in the neighborhood are 

smoothed by a normalized Gaussian filter with . This 

requires  multiplications for each point. 

• The neighborhood is divided into 4×4 regions. In each 

region the vectors (magnitude and direction of points) are 
histogrammed into 8 buckets covering 360º using trilinear 

interpolation. Again this requires  time for the 

neighborhood. 

• The feature is computed from these descriptors in the 

neighborhood by computing a normal of the descriptors in 

the neighborhood. 

 
Fig 3 Keypoint descriptor generation 

In the above Fig 3 shows that key point descriptors 

are generated using image gradients. 

• The resulting descriptor is represented as a 

normalized ˣ descriptor array each with an 8 bucket 

Histogram of vectors. Thus, the feature is 

bits long. 

As the time complexity is  for each 

keypoint identified so far, then the overall time complexity 

for all the keypoints is  .Considering 

the constants
2
, the number of operations is 

approximately . 

 

B. Module 2 

 

    In this module Color Names (CN) descriptor was employs 

for two reasons. First, it is shown in that CN has superior 

performance compared with several commonly used color 

descriptors such as the robust hue descriptor and Opponent 

derivative descriptor. Second, although colored SIFT 

descriptors such as HSV-SIFT and Hue-SIFT provide color 

information, the descriptors typically lose some invariance 

properties and are high-dimensional. Basically, the CN 

descriptor assigns to each pixel an 11-D vector, of which 

each dimension encodes one of the eleven basic colors: 

black, blue, brown, grey, green, orange, pink, purple, red, 

white and yellow. The effectiveness of CN has been 

validated in image classification and detection application. 

We further test it in the scenario of image retrieval. 

 

Feature Extraction: 

 At each keypoint, two descriptors are extracted, 

i.e., a SIFT descriptor and a CN descriptor. In this scenario, 

SIFT is extracted with the standard algorithm. As with CN, 

we first compute CN vectors of pixels surrounding the 

keypoint, with the area proportional to the scale of the 

keypoint. Then, we take the average CN vector as the color 

feature. The two descriptors of a keypoint are individually 

quantized, binarized, and fed into our model, respectively. 

 

Estimation of Feature Correlation  

 The feature correlation is calculated between SIFT 

visual word and binary CN. To this end, we crawled 200K 

high-resolution images uploaded by users. These images are 

generally high-resolution, with the most common size of 

1024 × 768. From the images, we extract over 2×109 (SIFT, 

CN) feature tuples. For feature tuples with the 

same/different SIFT visual word, compute the Hamming 

distance of CN features, and calculate the normalized 

distance histogram. Finally, The correlation coefficient is 

calculated between two histograms [5]. Briefly, the intuition 

is that, for highly independent features, the two histograms 

should be very similar: whether or not the SIFT visual 

words of a keypoint pair are the same, the Hamming 

distance of the other feature is not affected. 

 

4. EXPERIMENT RESULT 

 

After performing all the extraction of image features 

using SIFT and CN descriptor similar feature images are 

retrieved effectively from the databases.  
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The above image is our query image which is used for 

retrieving similar feature images after doing embedding of 

both two features that is SIFTS key and CN descriptor.  
 

 
 

 The above figure shows that the coordinate pixel 

values of query image. Those values are used for finding 

key values from a query image.  

 

 

The above figure shows that the gray scale values 

of the query image. The value up to 0 to 255. 

 After done the conversion of gray scale octave of 

scale space is calculated for that image using Gaussian Filter 

which is used for removing noisy from that image and also 

getting the scalable pixel values. 

 

 
 

 The above figure shows that similar feature images 

are retrieved from the database after perform all the steps. 

 

5. CONCLUSION 

    Binary Embedding methods are effective for 

visual matching verification. A coupled binary embedding 

method using a binary multi-index framework to fuse SIFT 

visual word with binary features at indexing level is 

proposed. To model the correlation between different 

features, a new IDF family is introduced, called the multi-

IDF [4], which can be viewed as a weighted sum of 

individual IDF of each fused feature. In large-scale settings, 

by storing binary features in the inverted file, the proposed 

method consumes acceptable memory usage and query time 

compared with other approaches. 

In the future work, more investigation will be 

focused on the mechanism of how features complement 

each other and promote visual matching accuracy. Since our 

method can be easily extended to include other binary 

features such as recently proposed ORB, BRISK , FREAK , 

etc, various feature fusion and selection strategies will also 

be explored to further improve performance. 
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