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Abstract — Clustering uncertain data has been well recognized as 

an important issue. Generally, an uncertain data object can be 

represented by a probability distribution. In Existing system, 

Kullback-Leibler (KL) divergence approach from information 

theory is used to measure the similarity of uncertain data. This 

approach work is based on probability mass function calculation, 

where continuous and discrete values of uncertain data are 

calculated. By using the probability mass function, distance value 

of continuous and discrete cases are calculated individually. The 

probabilistic ratio of both the cases is used to calculate the 

similarity. Then, the Density based clustering approach is used to 

cluster the uncertain data. However, choosing the nearest 

neighbor is a drawback in the existing system. To overcome this 

issue proposed system introduces K-nearest-neighbor algorithm 

to calculate the nearest neighbor. The K-nearest-neighbor (KNN) 

algorithm measures the distance between a query scenario and a 

set of scenarios in the data set. Here, distance is calculated for 

both continuous and discrete cases by using Probability mass 

function. Then, nearest neighbor is calculated by applying KNN 

approach. Thus, proposed system overcomes the existing 

drawback and produce effective result. 

 
Keywords— Clustering, Uncertain Data, density estimation, 

Probability mass function 

I. INTRODUCTION 

Clustering is the process of making group of abstract 

objects into classes of similar objects. A cluster of data objects 

can be treated as a one group. While doing the cluster analysis, 

first partition the set of data into groups based on data 

similarity and then assigns the label to the groups. Clustering 

is the problem of partitioning a given set of objects into 

subsets of similar objects. It has application in various areas of 

computer science such as machine learning, data compression, 

data mining, or pattern recognition. Depending on the 

application we want to cluster such diverse objects as text 

documents, probability distributions, feature vectors, etc. 

Obviously, different objects and different applications also 

require different notions of dissimilarity of objects. As a 

consequence, there are numerous different formulations of 

clustering.  

First step towards understanding clustering problems with 

non-metric dissimilarity measures, like Kullback-Leibler 

divergence. A problem that is relatively well understood in the 

case of Euclidean and metric distances: k-median clustering. 

In k-median clustering we have a representative (sometimes 

called prototype) for each cluster. In the geometric version of 

the problem this is the cluster center. Minimizing the sum of 

error of the clustering, i.e. the error that is made by 

representing each input object by its corresponding 

representative.  

Since  non-metric dissimilarity measures, this version of k-

median also captures other variants like the well known 

Euclidean k-means clustering, where the goal is to minimize 

the sum of squared errors (with respect to Euclidean distance). 

For instance, sensor measurements may be imprecise at a 

certain degree due to the presence of various noisy factors 

(e.g., signal noise, instrumental errors, and wireless 

transmission). at a certain degree due to the presence of 

various noisy factors (e.g., signal noise, instrumental errors, 

and wireless transmission).  

Clustering Analysis is broadly used in many applications 

such as market research, pattern recognition, data analysis, 

and image processing. Clustering can also help marketers 

discover distinct groups in their customer basis. And they can 

characterize their customer groups based on purchasing 

patterns. In field of biology it can be used to derive plant and 

animal taxonomies, categorize genes with similar 

functionality and gain insight into structures inherent in 

populations. Clustering also helps in identification of areas of 

similar land use in an earth observation database. It also helps 

in the identification of groups of houses in a city according 

house type, value, and geographic location. Clustering also 

helps in classifying documents on the web for information 

discovery. Clustering is also used in outlier detection 

applications such as detection of credit card fraud. 

 As a data mining function, Cluster Analysis serve as a tool 

to gain insight into the distribution of data to observe 

characteristics of each cluster. 

The remainder of this paper is organized as follows. 

Section II surveys related work, whereas Section III describes 

the KL Divergence Algorithm. Section IV describes the K-

Nearest Neighbor (KNN) algorithm to find the nearest 

neighbour in uncertain data, whereas Section V describes the 

system architecture of the proposed system. Section VI  and 

VII illustrates the design implementation of clustering 
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uncertain data. Section VIII illustrates the performance 

evaluation of the proposed system. Finally, Section IX 

concludes the paper. 

II. RELATED WORK 

Clustering is the main approach in data mining task. 

Clustering of uncertain data brings a new challenge of data 

uncertainity. Most studies of clustering uncertain data used 

density estimation, which are reviewed in the following 

section. 

 

A.  Fast Gauss Transform and Efficient Kernel Density 

Estimation 

Evaluating sum of multivariate Gaussians is a common 

computational task in computer vision and pattern recognition, 

including in the general and powerful kernel density 

estimation technique. The quadratic computational complexity 

of the summation is a significant barrier to the scalability of 

this algorithm to practical applications. The fast Gauss 

transform FGT[4] has successfully accelerated the kernel 

density estimation to linear running time for low dimensional 

problems. By higher dimensions, mean dimensions up to ten. 

Such high dimensional spaces are commonly used in many 

applications such as in video sequence analysis and eigen 

space based approaches. It also shows how the IFGT can be 

applied to the kernel density estimation.  

The proposed IFGT successfully reduced the computational 

complexity into linear time. The success in acceleration of the 

FGT comes from two innovations: the use of the farthest-point 

algorithm to adaptively subdivide the high dimensional space, 

and the use of a new multivariate Taylor expansion we 

developed to dramatically reduce the computational and 

storage cost of the fast Gauss transform. The recursive 

computation of the multivariate Taylor expansion further 

reduces the computational cost and necessary storage. 

B. Text Indexing Multi-Dimensional Uncertain Data with 

Arbitrary Probability Density Functions. 

 

In an “uncertain database”, an object o is associated with a 

multi-dimensional probability density function MPDF [7], 

which describes the likelihood that appears at each position in 

the data space. A fundamental operation is the “probabilistic 

range search” which, given a value pq and a rectangular area 

rq, retrieves the objects that appear in rq with probabilities at 

least pq. Our system presents the U-tree, a multi-dimensional 

access method on uncertain data with arbitrary pdfs. This 

structure minimizes the amount of appearance probability 

computation in prob-range search. Intuitively, it achieves this 

by pre-computing some “auxiliary information” for each 

object, which can be used to disqualify the object (in 

executing a query) or to validate it as a result without having 

to obtain its appearance probability. Such information is 

maintained at all levels of the tree to avoid accessing the sub 

trees that do not contain any results. It presented a careful 

study of the probabilistic range search problem on uncertain 

data. Our solutions can be applied to objects described by 

arbitrary pdfs, and process queries efficiently with small 

space. 

C. Monte Carlo Database for uncertain data  

Managing uncertain data has been explored in many ways. 

Different methodologies for data storage and query processing 

have been proposed. As the availability of management 

systems grows, the research on analytics of uncertain data is 

gaining in importance. While different approaches for 

uncertain data management have been proposed and much 

work has been done on uncertain data mining, no literature 

can be found in combining these two principles. To tackle this 

problem, here a new method is proposed to cluster uncertain 

data on the base of the previously motioned MCDB [8] 

approach in this project. By having the same computational 

principle in the mining algorithm and the database system, the 

already established tight integration of data mining algorithms 

and database system is continued for the uncertain data field.  

In this project, the proposed method is similar to the 

Monte Carlo Database for uncertain data to be able to include 

the algorithm into the database management system. The 

method is divided into three steps. In the first step, multiple 

possible worlds are generated from a dataset according to their 

uncertainty definition. In the second step, a cluster model is 

built for each world. For a final clustering the local clustering, 

results are aggregated into one clustering. 

III. KL-DIVERGENCE ALGORITHM  

It is natural to quantify the similarity between two uncertain 

objects by KL divergence.  

Given two uncertain objects P and Q and their 

corresponding probability distributions, D(P||Q) evaluates the 

relative uncertainty of Q given the distribution of  P. We have 

                              (1)              

which is the expected log-likelihood ratio of the two 

distributions and tells how similar they are. The KL 

divergence is always nonnegative, and satisfies Gibbs’ 

inequality. That is, D(P||Q) >=0 with equality only if P=Q.  

In the discrete case, it is straightforward to evaluate (4) to 

calculate the KL divergence between two uncertain objects P 

and Q from their probability mass functions calculated as (2).    

In the continuous case, given the samples of P and Q, by the 

law of large numbers, we have 

        (2) 

where we assume the sample of P ={P1,P2, …Ps}. Hence, we 

estimate the KL divergence D(P||Q) as 

                            (3) 

It is important to note that the definition of KL divergence 

necessitates that for any x є ID if P (x) > 0 then Q (x) > 0. To 

ensure that the KL divergence is defined between every pair 

of uncertain objects, we smooth the probability mass/density 

function of every uncertain object P so that it has a positive 

probability to take any possible value in the domain. 
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IV. KNN APPROACH 

K-Nearest Neighbors (KNN) classification divides data 

into a test set and a training set. For each row of the test set, 

the K nearest (in Euclidean distance) training set objects are 

found, and the classification is determined by majority vote 

with ties broken at random. If there are ties for the K
th

 nearest 

vector, all candidates are included in the vote. 

Suppose each sample in our data set has n attributes which 

we combine to form an n-dimensional vector: x = (x1, x2, . . 

xn). These n attributes are considered to be the independent 

variables. Each sample also has another attribute, denoted by 

y (the dependent variable), whose value depends on the other 

n attributes x. We assume that y is a categoric variable, and 

there is a scalar function, f, which assigns a class, y = f(x) to 

every such vectors.  We do not know anything about f 

(otherwise there is no need for data mining) except that we 

assume that it is smooth in some sense. 

Suppose that a set of T such vectors are given together 

with their corresponding classes: x(i), y(i) for i = 1, 2, . . . , T. 

This set is referred to as the training set. The problem we want 

to solve is the following. Supposed we are given a new sample 

where x = u. We want to find the class that this sample 

belongs. If we knew the function f , we would simply compute 

v = f(u) to know how to classify this new sample, but of 

course we do not know anything about f except that it is 

sufficiently smooth. 

The idea in k-Nearest Neighbor methods is to identify k 

samples in the training set whose independent variables x are 

similar to u, and to use these k samples to classify this new 

sample into a class, v. If all we are prepared to assume is that f 

is a smooth function, a reasonable idea is to look for samples 

in our training data that are near it (in terms of the 

independent variables) and then to compute v from the values 

of y for these samples. When we talk about neighbors we are 

implying that there is a distance or dissimilarity measure that 

we can compute between samples based on the independent 

variables. The Euclidean distance between the points x and u 

is 

                                          (4) 

The systems examine other ways to measure distance 

between points in the space of independent predictor variables 

when we discuss clustering methods. 

The simplest case is k = 1 where we find the sample in the 

training set that is closest (the nearest neighbor) to u and set v 

= y where y is the class of the nearest neighboring sample. It 

is a remarkable fact that this simple, intuitive idea of using a 

single nearest neighbor to classify samples can be very 

powerful when we have a large number of samples in our 

training set. It is possible to prove that if we have a large 

amount of data and used an arbitrarily sophisticated 

classification rule, we would be able to reduce the 

misclassification error at best to half that of the simple 1-NN 

rule. For k-NN we extend the idea of 1-NN as follows. Find 

the nearest k neighbors of u and then use a majority decision 

rule to classify the new sample. The advantage is that higher 

values of k provide smoothing that reduces the risk of over-

fitting due to noise in the training data. In typical applications 

k is in units or tens rather than in hundreds or thousands. 

Notice that if k = n, the number of samples in the training data 

set, we are merely predicting the class that has the majority in 

the training data for all samples irrespective of u. This is 

clearly a case of over-smoothing unless there is no 

information at all in the independent variables about the 

dependent variable. 

V. SYSTEM ARCHITECTURE 

Design is the only ways that can accurately translating a 

customer’s requirements in to a finished software product.  

Fig 1 shows the process through which the requirements are 

translated in to a representation of the software i.e. the blue 

print for constructing software. 

 

           

 

 Fig. 1  System Architecture 

VI. DESIGN FOR CLUSTERING OF UNCERTAIN DATA 

 

A. User Authentication 

B. KL Divergence approach 

C. KNN approach 

D. Data Transmission 

VII. DESIGN IMPLEMENTATION 

A. User Authentication 

In Fig 2 contains authentication details between client and 

server. First users make registration by entering the required 

details and sent to server. Server validates the user details and 

sent authentication details.  
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Fig. 2 User Authentication  

B. KL divergence approach  

KL divergence is an important approach. This approach 

finds the finds the similarity of uncertain data. In given Fig 3, 

the similarity is more helpful to cluster the data. Then cluster 

the uncertain data according to the similarity.     

                                                                                                              

Fig. 3  KL Divergence Method 

C. KNN approach 

After partitioning the datasets, the partitioned data sets are 

taken as input for KNN approach. This KNN approach finds 

the distance between every two node. Then if the distance is 

nearest than other node then that node is considered as nearest 

node which is shown in Fig. 4.              

                

           Fig. 4  KNN Approach  

D. Data transmission to user 

After clustering the dataset the server sends the dataset to 

requested user. Then the user receives the dataset and views. 

This module contains details about transmitting the data to 

user after clustering the data is shown in Fig. 5. 

            

Fig. 5 Data Transmission To User 

VIII. EVALUATION 

In the existing system, KL Divergence method and density 

method is used for clustering, that does not provide proper 

clustering between dataset. KNN Algorithm is used along 

with the KL Divergence algorithm for proper clustering that 

provides more performance and efficiency with lesser 

computation for probability distribution than the existing 

approach. 

IX. CONCLUSION AND FUTURE WORK 

A new mechanism is proposed for clustering uncertain 

data. First the user is registered with server and the server 

verifies the user’s details with the database. After verification 

user send the uncertain data to the server. The server uses 

KLL divergence mechanism for classifying discrete and 
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continuous case data and computes the similarity of the data. 

Finally apply K-NN algorithm to compute the distance 

between the nearest nodes and cluster the data. This method 

provides efficient clustering of uncertain data compared to 

other clustering methods. The future enhancement of this 

work is to implement an advanced clustering algorithm for 

clustering uncertain data.  
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