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ABSTRACT 

Cancer is one of the most important health 

problems that threat the human life. The likelihood 

of curing cancer increases with its early diagnosis 

and correct grading, for which histopathological 

examination is routinely used. The developed novel 

model uses both structural and statistical pattern 

recognition techniques to locate and characterize the 

biological structures in a tissue image for tissue 

quantification. This approach mainly includes three 

steps. They are graph generation for tissue images 

and query glands, localization of key regions, and 

feature extraction from the key regions. Unlike 

conventional approaches, this model quantifies the 

located key regions with structural and textural 

features extracted from the images. Then based on 

the extracted key features it classifies the images into 

two groups low and high grade with the help of SVM 

(Support Vector Machine) classifiers. The developed 

model leads to higher classification accuracies, 

compared against the conventional approaches that 

use only statistical techniques for tissue 

quantification.  

  Index terms-histopathological examination, pattern 

recognition, graph generation, key features, and 

Support Vector Machine classifiers. 

 

1 INTRODUCTION 

Cancer is a class of diseases characterized by 

out-of-control cell growth. There are over 100 different 

types of cancer, and each is classified by the type of cell 

that is initially affected.The likelihood of curing cancer 

increases with its early diagnosis and correct grading, 

for which histopathological examination is routinely 

used. The number of computational studies on 

histopathological image analysis is increasing over the 

past few years.  

The main aim of these studies is to automate 

the diagnosis and grading process for reducing the 

subjectivity that can be observed in histopathological 

examination. These studies extract features from a 

histopathological tissue image and use the features in 

automated diagnosis and grading. 

Digital pathology provides a digital 

environment for the management and interpretation of 

pathology information that is enabled by digital slides 

(virtual slides). The implementation of these systems 

typically requires a deep analysis of biological 

deformations from a normal to a cancerous tissue as 

well as the development of accurate models that 

quantify the deformations. These de-formations are 

typically observed in the distribution of the cells from 

which cancer originates, and thus, in the biological 

structures that are formed of these cells.  

For example, colon adenocarcinoma, which 

accounts for 90%–95% of all colorectal cancers, 

originates from epithelial cells and leads to deformations 

in the morphology and composition of gland structures 

formed of the epithelial cells (Figure 1). Moreover, the 

degree of the deformations in these structures is an 

indicator of the cancer malignancy (grade). Thus, the 

correct identification of the deformations and their 
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accurate quantification are quite critical for precise 

modeling of cancer. 

 

 

 

 

 

 

 

 

 

 

Fig 1 Colon adenocarcinoma changes the 

morphology and composition of colon glands. 

Although digital pathology systems are 

implemented for different purposes, including 

segmentation, and retrieval, most of the research efforts 

have been dedicated to tissue image classification. 

Compared to traditional pathology, major advantages of 

digital pathology are that slides can be viewed via 

computer monitors, archived and retrieved easily and 

most importantly analysed using software algorithms 

rather than by manual analysis. Virtual microscopy is 

the technique for creating (via scanners) and viewing 

(via software) whole-slide images.  

Pattern recognition is a field with in the area of 

machine learning, and it aims to classify data (patterns) 

based on either a priori knowledge or on statistical 

information extracted from the patterns. Most of the 

pattern recognition methods exist make use of 

procedures and algorithms. 

 

The classification or description scheme 

usually uses one of the following approaches: statistical 

(or decision theoretic) or syntactic (or structural). 

Statistical pattern recognition is based on statistical 

characterizations of patterns, assuming that the patterns 

are generated by a   probabilistic   system and it   is 

represented by d -features and attributes and viewed as a 

d-dimensional vector. Structural pattern recognition is 

based on the structural interrelationships of features 

recognition and represented as a symbolic data 

structures, such as strings, trees, or graphs.A wide range 

of algorithms can be applied for pattern recognition, 

from very simple Bayesian classifiers to much more 

powerful neural networks.  

 

2  METHODOLOGY 

 

It is a new approach to tissue image 

classification. This approach models a tissue image by 

constructing an attributed graph on its tissue 

components and describes what a normal gland is by 

defining a set of smaller query graphs. It searches the 

query graphs, which correspond to non deformed normal 

glands, over the entire tissue graph to locate the 

attributed sub graphs that are most likely to belong to a 

normal gland structure. Features are then extracted on 

these sub graphs to quantify tissue deformations, and 

hence, to classify the tissue. This approach includes 

three steps: graph generation for tissue images and query 

glands, localization of key regions (attributed sub 

graphs) that are likely to be a gland, and feature 

extraction from the key regions. The figure 2 shows the 

block diagram of entire system. 

 

A. Tissue graph generation 

 

Graphs are a general and powerful data 

structure for the representation of objects and concepts. 

In a graph representation, the nodes typically represent 

objects or parts of objects, while the edges describe 

relations between objects or object parts. 

 

This model describes tissue image with an 

attributed graph G={V,E, µ} where V is a set of nodes , 

E   V V  is a set of edges, and   : V    A  is a 

mapping function that maps each node νi   V   into an 

attributed node label αi     .This graph representation 

relies on locating the tissue components in the image, 

identifying them as the graph nodes, and as-signing the 

graph edges between these nodes based on their spatial 

distribution. However, as the exact localization of the 

components emerges a difficult segmentation problem, 

use an approximation that defines circular objects to 

represent the components. 

 

In order to define these objects, first quantify 

the image pixels into two groups: nucleus pixels and 

non-nucleus pixels. For that, separate the hematoxylin 

stain using the deconvolution method proposed in and 

threshold it with the Otsu’s method. Then, on each 

group of the pixels, locate a set of circular objects using 

the circle-fit algorithm. This approximation gives us two 

groups of objects: one group defined on the nucleus 

pixels and the other defined on the non - nucleus 

(whiter) pixels. These groups are herein referred to as 

“nucleus” and “white” objects.After defining the objects 

as the graph nodes, encode their spatial relations by 

constructing a tissue graph using Delaunay 

triangulation. For an example image given in Figure 

3(a), the constructed tissue graph is illustrated in Figure 

3(b) with the centroids of the nucleus and white objects 

(nodes) being shown as black and white circles, 

respectively. 
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 Fig 2  Block diagram of tissue image classification 

system. 

 

A normal gland is formed of a lumen 

surrounded by monolayer epithelial cells. The 

cytoplasms of normal epithelial cells are rich in mucin, 

which gives them their white-like appearance. Thus, in 

the ideal case, a query graph consists of many white 

objects at its center surrounded by a single layer nucleus 

objects.  

 

Note that there may exist deviations from this 

ideal case due to noise and artifacts in an image as well 

as model approximations, as seen in Figure 2.2(c). 

Subgraphs generated from normal tissues show an 

object distribution similar to that of a query graph. On 

the other hand, the object distribution of cancerous 

tissue subgraphs becomes different since colon 

adenocarcinoma causes deviations in the distribution of 

epithelial cells and changes the white-look appearance 

of their cytoplasms (epithelial cells become poor in 

mucin). The graph edit distance features will be used to 

quantify this difference. 

B.Query graph generation 

Query graphs are the sub graphs that 

correspond to normal gland structures in an image. To 

define a query graph Gs on the tissue graph G of a given 

image, select a seed node (object) and expand it on the 

tissue graph G using the breadth first search (BFS) 

algorithm until a particular depth is reached. 

 

In graph theory, breadth-first search (BFS) is 

a strategy for searching in a graph when search is 

limited to essentially two operations: (a) visit and 

inspect a node of a graph; (b) gain access to visit the 

nodes that neighbor the currently visited node. The BFS 

begins at a root node and inspects all the neighboring 

nodes. Then for each of those neighbor nodes in turn, it 

inspects their neighbor nodes which were unvisited, and 

so on. Compare BFS with the equivalent, but more 

memory efficient  Iterative deepening depth-first 

searches and contrast withdepth-first search. 

Then, take the visited nodes and the edges 

between these nodes to generate the query graph G. In 

this procedure, the seed node and the depth are manually 

selected, considering the corresponding gland structure 

in the image. Figure 3(c) shows this query graph 

generation on an example image; here black and white 

indicate the selected nodes and edges whereas gray 

indicates the unselected ones. 

The Figure 3 shows that (a) is the example 

normal tissue image, (b) is the tissue graph generated for 

this image, and (c) is a query graph generated to 

represent a normal gland. The node labels are indicated 

using four different representations and the orders in 

which the nodes are expanded are given inside their 

corresponding objects. 

Subsequently, the mapping function µ 

attributes each selected node with a label according to 

its object type and the order in which this node is 

expanded by the BFS algorithm. In particular, define 

four labels: αn-in and αω-in for the nucleus and white 

objects whose expansion order is less than the BFS 

depth and αn-out and αn-out for the nucleus and white 

objects whose expansion order is equal to the BFS 

depth. 

The query graph generation and labeling 

processes are illustrated in Figure 4.In this figure, a 

query graph is generated by taking the dash bordered 

white object as the seed node and selecting the depth as 

4. This illustration uses a different representation for the 

nodes of a different label: it uses black circles for αn-in 

white circles for αω-in, black circles with green borders 

for αn-out, and white circles with red borders for αω-out. It 

also indicates the expansion order of the selected nodes 
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inside their corresponding circles; note that the order is 

not indicated for the unselected nodes. 

 

 

 

 

 

 

 

 

 

Fig 3  An illustration of the graph generation step. 

The search process for key region localization 

uses the same algorithm to obtain sub graphs to which a 

query graph is compared. However, these sub graphs are 

generated by taking each object as the seed node and 

selecting the depth as the same with that of the query 

graph. Thus, the search process involves no manual 

selection. The search process is detailed in the key 

region localization process. 

 

C.Key region localization 

The localization of key regions in an image 

includes a search process. This process compares each 

query graph G with sub graphs Gt generated from the 

tissue graph G of the image and locates the ones that are 

the N- most similar to this query graph. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig 4 An illustration of generating a query graph. 

. The regions corresponding to the located 

subgraphs are then considered as the key regions. Since 

a query graph is generated as to represent a normal 

gland, the located subgraphs are expected to correspond 

to the regions that have the highest probability of 

belonging to a normal gland.  

 Typically, the subgraphs located on a normal 

tissue image are more similar to the query graph than 

those located on a cancerous tissue image. Thus, the 

similarity levels of the located subgraphs together with 

the features extracted from their corresponding key 

regions are used to classify the tissue image. 

The search process requires inexact graph 

matching between the query graph and the subgraphs, 

which is known to be an NP-complete problem. Thus, 

use an approximation together with heuristics on the 

subgraph definition to reduce the complexity due to 

polynomial time. 

1) Query graph search 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5  The query graphs generated as a reference for 

a normal gland structure and the subgraphs located 

in example normal, low-grade cancerous and high-

grade cancerous tissue images. 

Let Gs={Vs,Es,µs} be a query graph and νs  Vs 

be its seed node from which all the nodes in Vs are 

expanded using the BFS algorithm until the graph depth 

ds is reached. In order to search this query over the 
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entire tissue graph G={V,E, µ} , first enumerate 

candidate subgraphsGt={Vt,Et,µ} from the graph G. 

For that follow a procedure similar to the one 

that used to generate the query. Particularly, take each 

nodeνi  V that has the same label with νsas a seed node 

and expand this node using the BFS algorithm until the 

query depth ds .Note that the use of the same BFS 

algorithm with the same type of the seed node and the 

same graph depth, which is used in generating the query 

graph Gs, prunes many possible    candidates, and thus, 

yields a smaller candidate set. The nodes of the 

candidate subgraphs are also attributed with the labels in 

A={ αn-in, αω-in, αn-out, αω-out } using the mapping function 

µ,which was used to label the nodes of the query graphs.  

In the Figure 5 first image of each row shows 

the query graph on the image from which it is taken 

where as the remaining ones show the three-most similar 

subgraphs to the corresponding query graph. In the 

Figure 5, the subgraphs of the same image are shown 

with different colours (red for the most similar 

subgraph, green for the second-most similar subgraph, 

and blue for the third-most similar subgraph). After they 

are obtained, each of the candidate subgraphs Gt is 

compared with the query graph G using the graph edit 

distance metric and the most similar N nonoverlapping 

subgraphs are selected. To this end,start the selection 

with the most similar subgraph and eliminate other 

candidates if their seed node is an element of the 

selected subgraph. 

Then repeat this process N times until the N-

most similar subgraphs are selected. For different query 

graphs, Figure 2.4 presents the selected subgraphs in 

example tissue images; here only three-most similar 

subgraphs are shownNote that although there may not 

exist N .normal gland structures in an image, our 

algorithm locates the N-most similar sub-graphs, some 

of which may correspond to either more deformed gland 

structures or false glands.In this model do not eliminate 

these glands(subgraps) since the edit graph distance 

between the query graphs and the subgraphs of more 

deformed glands are expected to be higher and this will 

be an important feature to differentiate normal and 

cancerous tissue images. 

Indeed, our experiments reveal that this feature 

is especially important in the correct classification of 

high- grade cancerous tissues since subgraphs generated 

from these tissues are expected to look less similar to a 

query graph, leading to higher graph edit distances. 

These higher distances might be effective in defining 

more distinctive features. Also note that sometimes there 

may existN normal gland structures in an image but the 

algorithm may incorrectly locate subgraphs that 

correspond to nongland benign tissue regions. 

2) Graph edit distance calculation 

To select the subgraphs Gt={Vt,Et,µ}   that are 

most similar to a query graph Gs={Vs,Es,µ} ,the 

proposed model uses the graph edit distance algorithm, 

which gives error-tolerant graph matching. The edit 

graph distance quantifies the dissimilarity between a 

source graph Gs and a target graph Gt by calculating the 

minimum cost of edit operations the dissimilarity 

between a source graph Gs to transform it into Gt.This 

algorithm defines three operations : insertion (  νt ) 

that inserts a target node into Gs,delection (νs ε) that 

deletes a source node from Gs and substitution ( νs νt ) 

that changes the label of a source node in Gs to that of a 

target node in Gt. Note that these operations allow 

matching different sized graphs Gs and Gtwith each 

other. As illustrated in Figure 3.3, the proposed graph 

representations together with this graph edit distance 

algorithm make it possible to match the query gland 

regions with the regions of different sizes and 

orientations.  

Let (e1 , . . . .ei , . . . . , en)   β denote a sequence of 

operations ei that transforms Gs into Gt . 

The graph edit distance dist (Gs,Gt) is then 

defined as, 

 

       distGs,Gt=                                         (1) 

Where         is the cost of the operation ei. Since 

finding the optimal sequence requires an exponential 

number of trials with the number of Gs and Gt.This 

algorithm decomposes the graphs G and Gt into a set of 

subgraphs each of which contains a node in the graph 

and its immediate neighbors. Then, the algorithm 

transforms the problem of graph matching into an 

assignment problem between the subgraphs of G and Gt 

and solves it using the Munkres algorithm. 

Then shortest path can be obtained by using 

dijkstra shortest path algorithm. 

D.Feature extraction and classification 

Feature extraction is the transformation of the 

original data (using all variables) to a dataset with a 

reduced number of variables.  In feature extraction, all 

available variables are used and the data are transformed 

(using a linear or nonlinear transformation) to a reduced 

dimension space. First characterize a tissue image I by 

extracting two types of local features and classify the 

image using a linear kernel support vector machine 

(SVM) classifier. The first type is used to quantify the 
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structural tissue deformations observed in the image .To 

quantify them, graph matching’s used. However, as a 

standard SVM classifier does not work with the graphs, 

we embed the graph edit distances of the matching’s in a  

feature vector D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6 An illustration of minimum distance 

calculation. 

To do that, for each query graph Gs, calculate 

the average of the be a set of the N-most similar 

subgraphs of the image I. Let Gs=      be a set of the 

N-more similar subgraph for the query graph G . The 

average graphs edit distance ds for this query graph is, 

                ds =

  

 
              

                             (2) 

Where dist (        is the graph edit distance 

between the query graph GS  the subgraph Gst .Then ,the 

structural tissue deformations in the image I are 

characterized by defining the feature vector D=[ 

d1…ds…dS]
’
.he second feature type is used to quantify 

textural changes observed in the key regions. In our 

model; we focus on the outer parts of the key regions. 

The motivation behind this is the fact that changes 

caused by colon adenocarcinoma are typically observed 

in epithelial cells, which are lined up at gland 

boundaries.  

To extract the second type of features, locate a 

window on the outer nodes of the subgraphs and extract 

four simple features on the window pixels that are 

quantized into three colors using k-means. The first 

three features are the histogram ratios of the quantized 

pixels and the last one is a texture descriptor (J-value) 

that quantifies their uniformity. Note that the three 

colors correspond to white, pink, and purple, which are 

the dominant colors in a tissue stained with 

hematoxylin-and-eosin. 

 

3 RESULTS AND DICUSSION 

 

In this model the structural features are 

represented by graphs and textural features represented 

by key features as d-dimensional vectors. Mainly the 

developed model uses both structural and textural 

feature to classify the images into two groups, low and 

high graded tissue images based on various features 

extracted from the images. The features extracted from 

the images are contrast, energy, homogeneity, 

correlation. Then the image classification is mainly 

performed with the help of SVM classifiers. If the SVM 

classifier output is classes zero means it is a low graded 

image otherwise it is classified as a high graded tissue 

image. From classification results the low graded images 

are seems to be a normal images and high graded images 

are deviate from normal images. 

 The accuracy of the image also calculated 

based on True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative values. The above 

values are defined based on confusion matrix .The 

simulation result can be obtained with the help of image 

processing tool. The table 3.1 and 3.2 shows that the 

feature and accuracy value comparisons. 

 

4  CONCLUSION 

 

The developed novel model that makes use of 

both structural and statistical pattern recognition 

techniques for tissue image classification. This model 

represent a tissue image as an attributed graph of its 

components and characterize the image with the 

properties of its key regions. The main contribution of 

this work is on the localization and characterization of 

the key regions. The proposed model uses inexact graph 

matching to locate the key regions.  

 

To this end, it defines a set of query graphs as a 

reference to a normal gland structure and specifies the 

key regions as the sub graphs of the entire tissue graph 

that are structurally most similar to the quergraphs.Then, 

our model characterizes the key regions using the graph 

edit distances between the query graphs and their most 
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similar subgraphs as well as extracting textural features 

from the outer parts of the key regions. 

 

Table 1 Feature value comparison 

 

Extracted feature values Low grade High grade 

Contrast 0.8593 0.4672 

Correlation 0.8866 0.84430 

Energy 0.0818 0.8861 

Homogensity 0.1332 0.8256 

 

 

Table 2 Accuracy comparison 

 

Output 

image 

Sensitivit

y 

Specificity Accuracy 

Lowgrade  80 50 75 

Highgrade 90 50 83 

 

Then the classification is performed with the 

help of SVM classifiers. The proposed model provide 

improved classification accuracies compare to 

conventional classification methods, that uses only 

statistical pattern recognition for tissue image 

classification. 

 

4 FUTURE WORK 

Let us hope for further contribution can be 

implemented with feed forward neural network 

classifier, to improve the speed of operation and also 

improve number of classification range. 
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