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Abstract- The mammograms are high dynamic range 

(HDR) images having a 12 bit grayscale resolution. The 

screening mammography is currently the best procedure 

available for early detection of the breast cancer. When 

viewed by a radiologist, a single image must be examined 

several times, each time focusing on a different intensity 

range. Developed biologically derived mammography 

companding (BDMC) algorithm for compression, 

expansion, and enhancement of mammograms, in a fully 

automatic way. The BDMC is comprised of two main 

processing stages: 1) Preliminary processing operations 

which include standardization of the intensity range and 

expansion of the intensities which belong to the low 

intensity range.  2) Adaptively companding the HDR 

range by integrating multiscale contrast measures. The 

algorithm’s performance has been preliminarily clinically 

tested on dozens of mammograms in collaboration with 

experienced radiologists. It appears that the suggested 

method succeeds in presenting all of the clinical 

information, including all the abnormalities, in a single 

low dynamic range companded image. This companded 

and enhanced image is not degraded more than the HDR 

image and can be analyzed without the need for 

professional workstation and its specific enhancement 

software. The segmentation process performed after 

completion of companding algorithm using level set 

implementation method. This segmented image identifies 

severity of cancerous tissues very easily. 

Index Terms—Companding (compressing and expanding), 

high dynamic range (HDR), image enhancement, image 

segmentation, mammography. 

I. INTRODUCTION 

 

 Mammograms don’t prevent breast cancer, but they 

can save lives by finding breast cancer as early as possible. 

For example, mammograms have been shown to lower the 

risk of dying from breast cancer by 35% in women over the 

age of 50. In women between ages 40 and 50, the risk 

reduction appears to be somewhat less. The acquired 

mammograms are high dynamic range (HDR) images having 

a 12–14 bit grayscale resolution.  

 The common display devices that have a low 

dynamic range (LDR) of 8 bit grayscale resolution cause the 

mammography images to have low contrast. Hence, we relate 

to studies that enhanced the mammograms through 

performance of contrast enhancement. Many reports on the 

contrast enhancement of mammography images relate to 

different algorithm families, such as several intensity 

windowing algorithms that have been developed. When using 

these types of algorithms, a small portion of the high intensity 

range of an image is selected and then remapped to a full 

intensity range of the display device 

 

A. Work Flow 

The schematic representation of the steps involved in 

BDMC algorithm is shown in Fig 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3 Work Flow of the Project 

B. Biologically Derived Mammography Companding

 Algorithm 

 The suggested method has a specific mammography 

companding algorithm which is based on visual system 

models. It is termed biologically derived mammography 

companding (BDMC). The algorithm can be divided into two 
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main parts: preliminary stages which enable more efficient 

algorithm implementation and better visualization of the 

resultant image and the companding of the HDR 

mammography image. 

 

1) Standardization and Low Intensity Expansion 

 Since the range of digital intensity values containing 

the breast tissue can vary significantly depending on the 

acquisition parameters, a standardization of the intensity range 

is required. The standardization is performed by equalizing 

gray levels of the cumulative distribution function (CDF) at 

0.05 and 0.95 to specific values, chosen as representatives of 

the common intensity range. All the intensities of the input 

image are transformed using linear transformation which 

preserves the ratios between the intensity values. This 

standardization procedure forces the dark and bright areas of 

the image to be located at almost the same intensity range. 

 Since HDR algorithm works more effectively on 

high intensity levels of the image, preliminary contrast 

enhancement of low intensities is required. Thus, we expand 

the low contrast of the fatty tissues. An injective function 

(tone reproduction curve mapping) is implemented on the 

already standardized image. The mapping function consists of 

sigmoid function multiplied by power function 

𝐼𝑒𝑥𝑝  𝑥, 𝑦 =
𝐼𝑠(𝑥 ,𝑦)𝑏

1+𝑒𝑥𝑝 (−𝑎(𝐼𝑠 𝑥 ,𝑦 −𝑐))
          (1) 

 

whereas and c are constants that determine the slope and the 

position of the curve, respectively, and b determines the 

convexity of the curve. This specific mapping function 

enables expansion of low intensities while leaving the high 

intensities almost unchanged. For different adaptation levels, 

different response curves are obtained. In this example, the 

upper bold curve is a response curve before the adaptation. 

The arrow shows how the adaptation mechanism controls the 

gain of the system and yields the lower bold response curve. 

 

2) High Dynamic Range Mammography 

Multiscale Companding:  

 The core of the algorithm is to compand (compress 

and expand) the HDR mammography image. The high 

dynamic range companding (HDRC) algorithm has been 

inspired by the adaptation mechanism of the visual system, 

i.e., the curve-shift mechanism. The HDRC algorithm will be 

explained in two main stages. The first stage describes the 

spatial building blocks (the retinal opponent receptive fields). 

This second stage describes the adaptation mechanism applied 

as a gain control mechanism. The adaptation mechanisms 

(local and remote) were performed separately for the center 

and the surround receptive field’s sub regions. The adaptation 

of each sub region (center or surround) is influenced by the 

response of the remote region. Fig.3 presents a schematic 

structure of the HDRC algorithm. 

 

a) Building Blocks of the Algorithm: The retinal 

ganglion receptive fields have spatial structure of “center” and 

“surround” masks. These opponent receptive fields have often 

been modeled in the literature by difference of Gaussians 

spatial mask. Additional annular shaped “remote” spatial 

mask𝑓𝑟 , has been added beyond the classical receptive fields 

of the “center”,𝑓𝑐  and “surround”𝑓𝑠masks. This remote area 

has not been added as a receptive field region, since it does 

not yield a response by itself, rather it modulates the response 

of the center and the surround regions. 
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Fig 4Curve-shifting mechanism 

The “center,” “surround,” and “remote” responses are 

calculated by convolving the output image of the previous 

stage,𝐼𝑒𝑥𝑝 with the appropriate spatial masks𝑓𝑐𝑓𝑠  
, and𝑓𝑟 : 

 

𝐺𝑐𝑒𝑛  𝑖, 𝑗 =  𝑐𝑒𝑛𝑡𝑒𝑟
∑

𝐼𝑒𝑥𝑝  𝑥, 𝑦 . 𝑓𝑐(𝑖 − 𝑥, 𝑗 − 𝑦)𝑎𝑟𝑒𝑎
∑

     (2) 

𝐺𝑐𝑒𝑛  𝑖, 𝑗 =  𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑
∑  𝐼𝑒𝑥𝑝  𝑥,𝑦 . 𝑓𝑠 𝑖 − 𝑥, 𝑗 − 𝑦 𝑎𝑟𝑒𝑎

∑  
(3) 

𝐺𝑐𝑒𝑛  𝑖, 𝑗 =  𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑
∑

𝐼𝑒𝑥𝑝  𝑥,𝑦 . 𝑓𝑠(𝑖 − 𝑥, 𝑗 − 𝑦)𝑎𝑟𝑒𝑎
∑

(4) 

 Since 𝑓𝑐has been applied with a size of one pixel, the 

𝐺𝑐𝑒𝑛 response equals the image𝐼𝑒𝑥𝑝 .The flow chart for HDRC 

is shown in the Fig. 5 the algorithm has to be applied n varies 

parameters such as center, remote, and surround areas and the 

results are shown in the chapter 4 results and discussion.  

b) Adaptation (Gain Control) Mechanism 

The aim of adaptation is to increase the sensitivity of a system 

in a specific stimulus range in a specific physical domain. In 

the current adaptation mechanism of the retinal ganglion 

receptive fields, there is a transition from one response curve 

to another, resulting from a change in the light intensity of the 

local receptive field and its remote area, to obtain a higher 

gain in the new light intensity, Fig. 3.7. The “center” and the 

“surround” areas adapt separately, and only then the classical 

subtraction is done.  

Hence 

𝑅 = 𝑑𝑐𝑒𝑛 .
𝐺𝑐𝑒𝑛

𝐺𝑐𝑒𝑛 +𝜍𝑐𝑒𝑛
− 𝑑𝑠𝑟𝑛𝑑 .

𝐺𝑠𝑟𝑛𝑑

𝐺𝑠𝑟𝑛𝑑 +𝜍𝑠𝑟𝑛𝑑
             (5) 
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where 𝑑𝑐𝑒𝑛  and 𝑑𝑠𝑟𝑛𝑑  are adaptation weight functions of each 

receptive field region. 𝜍𝑐𝑒𝑛 And𝜍𝑠𝑟𝑛𝑑 are the adaptation 

functions that determine 

𝜍𝑐𝑒𝑛 = 𝜍𝑐𝑒𝑛 , 𝑙𝑜𝑐𝑎𝑙 + 𝜍𝑐𝑒𝑛 , 𝑟𝑒𝑚𝑜𝑡𝑒                    (6) 

 𝜍𝑠𝑟𝑛𝑑 = 𝜍𝑠𝑟𝑛𝑑 , 𝑙𝑜𝑐𝑎𝑙 + 𝜍𝑠𝑟𝑛𝑑 , 𝑟𝑒𝑚𝑜𝑡𝑒              (7) 

 

   (3.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5 Flowchart of the HDRC algorithm. 

The “local” components are 

𝜍𝑐𝑒𝑛 ,𝑙𝑜𝑐𝑎𝑙 = 𝛼𝑐𝑒𝑛
΄

 
. 𝐺𝑐𝑒𝑛 + 𝛽𝑐𝑒𝑛                             (8) 

𝜍𝑠𝑟𝑛𝑑 ,𝑙𝑜𝑐𝑎𝑙 = 𝛼𝑠𝑟𝑛𝑑
΄ . 𝐺𝑠𝑟𝑛𝑑 + 𝛽𝑠𝑟𝑛𝑑                    (9)  

Where α is a parameter that determines the degree of the 

shifting the curve-shifting mechanism; β is a parameter that 

poses a “threshold” for the curve-shifting initiation. The 

degree of curve-shifting due to “local” and “remote” 

components. 

The “remote” components are 

𝜍𝑐𝑒𝑛 ,𝑟𝑒𝑚𝑜𝑡𝑒 = 𝑐𝑐𝑒𝑛
 

 
. 𝑀𝑅𝑀𝑐𝑒𝑛 . 𝐺𝑟𝑒𝑚𝑜𝑡𝑒               (10) 

𝜍𝑠𝑟𝑛𝑑 ,𝑟𝑒𝑚𝑜𝑡𝑒 = 𝐺𝑠𝑟𝑛𝑑
 

 
. 𝑀𝑅𝑀𝑠𝑟𝑛𝑑 . 𝐺𝑠𝑟𝑛𝑑             (11)   

 

where c is a parameter that determines the magnitude of the 

remote adaptation. The opponent receptive field total response 

𝑅 = 𝑑𝑐𝑒𝑛 .
𝐺𝑐𝑒𝑛

𝛼𝑐𝑒𝑛
΄

 
. 𝐺𝑐𝑒𝑛 + 𝛽𝑐𝑒𝑛 + 𝑐𝑐𝑒𝑛

 
 
. 𝑀𝑅𝑀𝑐𝑒𝑛 . 𝐺𝑟𝑒𝑚𝑜𝑡𝑒

 

−𝑑𝑠𝑟𝑛𝑑 .
𝐺𝑠𝑟𝑛𝑑

𝛼𝑠𝑟𝑛𝑑
΄

 
.𝐺𝑑𝑟𝑛𝑑 +𝛽𝑠𝑟𝑛𝑑 +𝑐𝑠𝑟𝑛𝑑

 
 
.𝑀𝑅𝑀𝑠𝑟𝑛𝑑 .𝐺𝑟𝑒𝑚𝑜𝑡𝑒

(12) 

 Since the amount of expansion is determined due to 

local function which spreads over a large area (𝐺𝑟𝑒𝑚𝑜𝑡𝑒 ), the 

responseR, is a non-injective operation. This property is 

expressed in the “thickness” of the response curve, which 

reflects the amount of adaptation, Fig. 6. 

 
Fig. 6 Example of a response curve after the adaptation took 

place. 

c) Multiscale Remote Modulation (MRM) Function: We 

aimed to determine the amount of expansion that the curve-

shifting mechanism causes through the amount of local 

contrast. Since mammographic images have no clear edges 

(the glandular tissue looks like a “pack of clouds”), we had to 

apply new measures for texture contrast, in accordance with 

the requirements for mammography images. (This texture 

contrast has been motivated by computations that have been 

done on components of model for adaptation of the second 

order, at post retinal receptive fields). The modulations 

𝑀𝑅𝑀𝑐𝑒𝑛  and 𝑀𝑅𝑀𝑠𝑟𝑛𝑑  to the adaptation functions 𝜍𝑐𝑒𝑛  and 

𝜍𝑠𝑟𝑛𝑑 , respectively, are determined by approximation of the 

relative local texture contrast in relation to the maximum 

texture contrast in the image. 

𝑀𝑅𝑀𝑐𝑒𝑛 = 𝐶𝑙𝑜𝑐𝑎𝑙 ,𝑚𝑎𝑥 − 𝐶𝑙𝑜𝑐𝑎𝑙                          (13) 

𝑀𝑅𝑀𝑠𝑟𝑛𝑑 = 𝐶𝑟𝑒𝑚𝑜𝑡𝑒 ,𝑚𝑎𝑥 − 𝐶𝑟𝑒𝑚𝑜𝑡𝑒                          (14) 

Where 𝐶𝑙𝑜𝑐𝑎𝑙  and 𝐶𝑟𝑒𝑚𝑜𝑡𝑒  are the multiscale local and 

remotecontrast quantifiers (in order to identify the specific 

texture edgesin the mammogram) of the initially preprocessed 

input image I.  

 The  𝐶𝑙𝑜𝑐𝑎𝑙 ,𝑚𝑎𝑥  and 𝐶𝑟𝑒𝑚𝑜𝑡𝑒 ,𝑚𝑎𝑥  are the maximum contrast 

values of each contrast quantifier. The suggested method 

includes DOG filters of several resolutions that have the 

“center– surround” structure. 

 The “center” signal is defined as a convolution between 

the input image I, and a Gaussian decaying spatial weight 

function, 𝑓𝑐
𝑘 : 

𝐿𝑐𝑒𝑛
𝑘  𝑖, 𝑗 =  𝑐𝑒𝑛𝑡𝑒𝑟

∑
𝐼  𝑥, 𝑦 . 𝑓𝑐

𝑘(𝑖 − 𝑥, 𝑗 − 𝑦)𝑎𝑟𝑒𝑎
∑

      (15) 
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where k represents the specific spatial resolution. The larger 

the k value the coarser the spatial resolution (k = 1 is the finest 

resolution). fc is defined as 

 𝜌𝑟𝑒𝑚𝑜𝑡𝑒
𝑘  

=
1

𝜋 .𝜌𝑐𝑒𝑛
𝑘 2 . exp(−

𝑥2+𝑦2

𝜌𝑐𝑒𝑛
𝑘 2 )                         (16)        

Where 𝜌𝑐𝑒𝑛
  represents the radius of the center region of 

thereceptive field. The “surround” signal is similarly defined 

𝐿𝑠𝑟𝑛𝑑
𝑘  𝑖, 𝑗 =  𝑠𝑢𝑢𝑟𝑜𝑢𝑛𝑑

∑
𝐼  𝑥, 𝑦 . 𝑓𝑐

𝑘(𝑖 − 𝑥, 𝑗 − 𝑦)𝑎𝑟𝑒𝑎
∑

(17) 

and 𝑓𝑠is a decaying Gaussian over the surround area  

𝑓𝑠
𝑘 𝑥, 𝑦 =

1

𝜋 .𝜌𝑠𝑟𝑛𝑑
𝑘 2 . exp(−

𝑥2+𝑦2

𝜌𝑠𝑟𝑛𝑑
𝑘 2)                          (18) 

Where 𝜌𝑠𝑟𝑛𝑑
𝑘  represents the radius of the surround area of 

thereceptive field. At each resolution, the surround mask has 

threetimes larger support area and a radius two times larger 

than thatof the center mask 

       𝜌𝑠𝑟𝑛𝑑
𝑘 = 2.𝜌𝑐𝑒𝑛

𝑘                            (19)    

The weight functions of 𝑓𝑐and𝑓𝑠is normalized to 1. The total 

response at each resolution is calculated as a subtraction of the 

center and the surround responses of the appropriate 

resolution 

       𝐿𝑙𝑜𝑐𝑎𝑙
𝑘 = 𝐿𝑐𝑒𝑛

𝑘 − 𝐿𝑠𝑟𝑛𝑑
𝑘                           (20) 

The local contrast quantifier is computed as a Gaussian 

weighting of the sum of the values of all resolutions: 

𝐶𝑙𝑜𝑐𝑎𝑙  𝑖, 𝑗 =  𝑙𝑜𝑐𝑎𝑙
∑   𝐿𝑙𝑜𝑐𝑎𝑙

𝑘
𝑘−1

∑   
𝑎𝑟𝑒𝑎

∑  
 𝑥, 𝑦 . 𝑊𝑙𝑜𝑐𝑎𝑙 (𝑖 − 𝑥, 𝑗 − 𝑦)   

(21) 

The kernel 𝑊𝑙𝑜𝑐𝑎𝑙
 is a Gaussian decaying spatial 

weightfunction 

𝑊𝑙𝑜𝑐𝑎𝑙
  𝑥, 𝑦 =

1

𝜋 .𝜌𝑙𝑜𝑐𝑎𝑙
𝑘 2 . exp(−

𝑥2+𝑦2

𝜌𝑙𝑜𝑐𝑎𝑙
𝑘  )           (22) 

where𝜌𝑙𝑜𝑐𝑎𝑙  is the radius of the local region. The remote 

contrast quantifier is computed with an additional Gaussian 

decaying kernel with an annular shape. 

𝐶𝑟𝑒𝑚𝑜𝑡𝑒
  𝑖, 𝑗 =  𝑟𝑒𝑚𝑜𝑡𝑒

∑
𝐶𝑙𝑜𝑐𝑎𝑙  𝑥, 𝑦 . 𝑊𝑟𝑒𝑚𝑜𝑡𝑒

 (𝑖 − 𝑥, 𝑗 − 𝑦)𝑎𝑟𝑒𝑎
∑

 

(23)   

𝑊𝑟𝑒𝑚𝑜𝑡𝑒
  𝑥,𝑦 =

1

𝜋 .𝜌𝑟𝑒𝑚𝑜𝑡𝑒
2  . exp(−

𝑥2+𝑦2

𝜌𝑟𝑒𝑚𝑜𝑡𝑒
𝑘   )     (24) 

Where 𝜌𝑟𝑒𝑚𝑜𝑡𝑒
   is a radius of the remote area. Both 

Gaussianweighting kernels are normalized to 1. 

3 Mapping Functions and Mask Properties 

a) Standardization and Low Intensity Expansion: The 

mapping function parameters are the following: a =0.011, b = 

0.8 and c is calculated adaptively as the average intensity of 

pixels that are considered to be within the fatty tissue. 

b) High Dynamic Range Mammography 

 Multiscale Companding: Each pixel of the input image 

was simulated as the center region of the opponent receptive 

field. Accordingly, the “center”𝑓𝑐mask has a radius of 1 pixel. 

The intensity range surround region of the “surround” 𝑓𝑠mask 

was defined as having an outer radius of13 pixels excluding 

the central pixel. The “remote” mask 𝑓𝑟hasan annular shape 

with inner and outer radii of 13 and 39 pixels, respectively. 

The inner radius of the “remote” is equal to the external radius 

of the “surround” and therefore does not overlap the “center” 

or the “surround” regions. The 

Table 1 Masks Properties [pixels] 

 

spatial functions𝑓𝑐 ,𝑓𝑠 and 𝑓𝑟are represented by Gaussian 

decaying profiles with appropriate variances. The total 

weights of these functions are normalized to 1. All of the 

masks’ properties are summarized in Table 1. 

 The Spatial structure of “local” and “remote” areas and 

multiscale center surround”. The circles of different sizes 

illustrate the “center-surround” masks of different resolutions. 

The inner circle area illustrates the “local” area that is defined 

by a Gaussian kernel𝑊𝑙𝑜𝑐𝑎𝑙 . The outer ring illustrates the 

“remote” area that is defined by an annulus like Gaussian 

kernel𝑊𝑟𝑒𝑚𝑜𝑡𝑒 . 

 The adaptation function parameter values are summarized 

in Table 2. These values are the optimal values we have 

selected over a large number of simulations on a vast variety 

of mammograms. The chosen values were used across all of 

the processed mammograms. The values of mask patterns and 

the HRDC algorithm parameters to be applied to the HRDC 

algorithm then the resulting enhancement are obtained. The 

major practical contribution of this study in companding the 

HDR mammography images to LDR mammography images 

might lie in the important benefits of using the algorithm  

clinical settings. The algorithm succeeds to compress and 

expose all of the details from the original images. 

Resolution 

index 

𝑓𝑐𝑒𝑛
𝑘  𝜌𝑐𝑒𝑛

𝑘  𝑓𝑠𝑟𝑛𝑑
𝑘  𝜌𝑠𝑟𝑛𝑑

𝑘  

1 1 1 3 2 

2 3 3 9 6 

3 5 5 15 10 

4 7 7 21 14 

5 9 9 27 18 

6 11 11 33 22 
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\ 

Fig 7 Spatial structure of “local” and “remote” areas and 

multiscale center surround “filters for contrast quantifier 

computations. 

Table 2 HDRC algorithm parameters 

 

c) Multiscale Remote Modulation (MRM) Function: Local 

multiscale contrast is calculated over six resolutions. The 

mask sizes and their radii differ between each two subsequent 

resolutions by 2 pixels. For each resolution the center radius is 

the same size as the mask size. The radius for the matching 

surround mask is twice as large. The full details of the 

different mask sizes and their compatible radii, both of 

“center”𝑓𝑐
𝑘and “surround” 𝑓𝑠

𝑘regions, at different resolutions, 

are summarized in Table 3.The calculations of the 𝐶𝑙𝑜𝑐𝑎𝑙  

quantifier were performed witha 𝜌𝑙𝑜𝑐𝑎𝑙  radius (variance of 

Gaussian profile) of 4 pixels. The calculations of the 𝐶𝑟𝑒𝑚𝑜𝑡𝑒  

quantifier were performed with a Fig. 7.  

Table 3 MRM masks properties 

d) Visual Validation 

 The Fig 8 (a) shows benign images often contain 

abnormalities, but without clinically relevant findings, which 

presents lower and upper seromas (cavities filled with fluids 

due to lumpectomy). The final result Fig 4.1 (b) shows 

significant contrast improvement of all the intensity zones.  

 

Fig 8 The arrow points to a carcinoma with a speculated mass 

shape. (a) Original image. (b) BDMC algorithm result. 

 

II. CONCLUSION 

 BDMC algorithm performs companding through a “curve-

shifting” mechanism, while determining the amount of 

compression based on a specific multiscale contrast measure 

that has been suggested originally for the visual system. The 

algorithm succeeds to compress and expose all of the details 

(including diagnostic information) from the original image, 

which is an HDR image, to an LDR image. This algorithm has 

the potential to enable the physicians to observe the 

mammograms without the need for professional workstations 

and it specific enhancement software. 

 

III. FUTURE WORK 

 The future enhancement will be segmentation of cancerous 

cells from this enhanced mammography images. The level set 

method of segmentation is very adaptive for this type of 

segmentation. This method will be used for segmentation of 

features. It is very useful for identifying of the severity of the 

carcinoma and cancerous cells easily.   
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