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Abstract -In this paper, we propose a new very large scale 

integration (VLSI) algorithm for a 2N-length discrete 

Hartley transform (DHT) that can be efficiently 

implemented on a highly modular and parallel VLSI 

architecture. In the existing system the conventional 

discrete Hartley transformation is used. In that system has 

more number of multipliers which leads to more cost and 

high complexity in VLSI Architectures. To overcome this 

demerit, New Discrete Hartley transformation is going to 

be proposed. The proposed DHT components can be 

separated as even and odd components and the 

computation can be done parallely.The DHT algorithm can 

be efficiently split on several parallel parts that can be 

executed concomitantly. The proposed DHT architecture is 

well-matched for the sub expression sharing technique. 

Sub expression technique is used when one data is 

multiplied with many constants or sum of product. So it 

reduces the number of multiplications which in turn 

reduce the hardware complexity, delay and cost. 

Keywords: Discrete Hartley transform (DHT), DHT 

domain processing, fast algorithms. 

 

                        I.INTRODUCTION 

The Discrete Fourier transform (DFT) is used in many 

digital signal processing applications as in signal and 

image compression techniques, filter banks, signal 

representation, or harmonic analysis. The discrete 

Hartley transform (DHT) can be used to efficiently 

replace the DFT when the input sequence is real. In the 

literature, there are some fast algorithms for the 

computation of DHT and some algorithms for the 

computation of generalized DHT. There are also several 

split-radix algorithms for computing DHT with a low 

arithmetic cost. Thus, Sorensen et al.  and Malvar 

proposed split-radix algorithms for DHT with a Low 

arithmetic cost. Bi proposed another split-radix 

algorithm where the odd-indexed transform outputs is 

computed using an indirect method. The classical split-

radix algorithm is difficult to implementation of VLSI 

due to its irregular computational structure and due to 

the fact that the butterflies significantly differ from stage 

to stage. Thus, it is necessary to derive new such 

algorithms that are suited for a parallel VLSI system 

.There are also in the literature several fast algorithms 

that use a recursive strategy for discrete cosine 

transform (DCT) and  for generalized DHT. Since DHT 

is computationally intensive, it is necessary to derive 

dedicated hardware implementations using the VLSI 

technology. One category of VLSI implementations is 

represented by systolic arrays. There are many systolic 

array implementations of DHT. Systolic array 

architectures are modular and regular, but they use 

particularly pipelining and not parallel processing to 

obtain a high-speed processing. In the literature, highly 

parallel solutions were also proposed.  

 

 

 The DHT can be computed from the DFT of a real-

valued sequence, so FFT algorithms optimized for real-

valued sequences must also be considered viable fast 

algorithms for computation of the discrete Hartley 

transform. The operation counts for the FHT algorithms 

are determined and compared to the counts for 

corresponding real-valued FFT algorithms. A unified 

development of algorithms for the real-valued FFT and 

the DHT gives insight into both the discrete Hartley 

transform and fast algorithms. Using this filter collateral 

a desired output is generated, it can be used as a part for 

mass updating to be observe using conventional LMS 

adaptive algorithm. It is suitable in many real time DSP 

processing such as adaptive filters. The conventional 

LMS adaptive algorithm, is used for real-time operation 

and this algorithm used to the conventional existing 

systems. 
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  We have a highly parallel solution for the 

implementation of DHT based on a direct 

implementation of fast Hartley transform (FHT).  

It is worth to note that hardware implementations of 

FHT are rare. Multipliers in a VLSI structure consume a 

large portion of the chip area and introduce significant 

delays. This is the reason why memory-based solutions 

to implement multipliers have been more and more used 

in the literature. To efficiently implement multipliers 

with lookup-table-based solutions, it is necessary that 

one operand to be a constant. When one of the operands 

is constant, it is possible to store all the partial results in 

a ROM, and the number of memory words is 

significantly reduced from 22L to 2L.  

                   

 In this paper we proposed a new VLSI DHT algorithm 

that is well suited for a VLSI implementation on a 

highly parallel and Modular architecture . It can be used 

for designing a completely novel VLSI architecture for 

DHT. Moreover, using sub expression sharing technique 

and sharing the multipliers with the same constant, the 

hardware complexity can be significantly reduced the 

number of multipliers being very small, significantly 

less than that in. In the proposed solution, we have used 

only multipliers with a constant that can be efficiently 

implemented in VLSI. The proposed solution is not only 

appealing by its high level of parallelism and by using a 

modular and regular structure but it can be also used to 

obtain a small hardware complexity by extensively 

sharing the common blocks.  

 

 

II. ALGORITHM FOR DHT 

The discrete Hartley transform is a linear, invertible 

function H : R
n
 -> R

n
 (where R denotes the set of real 

numbers). The N real numbers x0, ...., xN-1 are 

transformed into the N real numbers H0, ..., HN-1 

according to the formula 
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Where K = 0,…………,N-1 
 

                       cos(x) + sin(x) = cas(x). 

 .  

 
 

The cas function is the sum of sine and cosine function. 

We can compute a N-length DHT using a new algorithm 

given by the following relations: 

 

XN(k) {x(i)} = XN/2(k) {x(2i)} + u(0) · sin(2kπ/N) 

                       +[ XN/2(k) {u(i)} − u(0)/ 2]  

                            . 2 · cos(2kπ/N)                             (2) 

XN(N/2 + k) {x(i)} = XN/2(k) {x(2i)} − u(0) ·                            

sin(2kπ/N ) –[ XN/2(k) {u(i)} − u(0)/2] 

                               . 2 · cos(2kπ/N)]  

for k = 0, 1, . . .,N/4 − 1                                           (3) 

 

 

 XN(N/2 − k) {x(i)} = XN/2(N/2 − k) {x(2i)} 

                    + u(0) · sin(2kπ/N -[XN/2(N/2 − k) {u(i)} −   

u(0)/2]· 2 · cos(2kπ/N)                                             (4)  

 

                                                    

 XN(N − k) {x(i)} = XN/2(N/2 − k) {x(2i)} − u(0) ·   

sin(2kπ/N)+[XN/2(N/2 − k) {u(i)} − u(0)/2] 

· 2 · cos(2kπ/N) for k = 1, . . . , N/4                         (5)   

                                  

 

   Where 
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are DHT of length N/2, with {u(i) : i = 0, 1, . . .,N/2 − 1} 

an auxiliary input sequence given by 

 

        u(N/2 − 1) =x(N − 1)                                      (8)  

                                                     

        u(i) =x(2i + 1) − u(i + 1) 

 

         for i = N/2 − 2, . . . , 1, 0.                               (9)                                                                     

 

 

For the computation of (2)–(5), there are necessary 

extra7N/4 additions and N/2 multiplications, if we share 

the multipliers with the same constant. For the 

computation of the auxiliary input sequence using (8) 

and (9), there are necessary extra N/2 − 1 additions. The 

obtained algorithm can be used as a VLSI algorithm 

where the number of multipliers can be significantly 

reduced by sharing the multipliers with the same 

constant. 

 

III. PROPOSED STRUCTURE 

An efficient implementation of a fast DHT algorithm 

closely depends on an efficient algorithm for a small 

DHT. We present here an efficient DHT algorithm for a 

length N = 8 
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      X(0) = [(x(0) + x(4)) + (x(2) + x(6))]   

 

                             + [(x(1) + x(5)) + (x(3) + x(7))]  

                    

      X(2) = [(x(0) + x(4)) − (x(2) + x(6))] 

   

                             + [(x(1) + x(5)) − (x(3) + x(7))]  

                     

      X(4) = [(x(0) + x(4)) + (x(2) + x(6))] 

 

                             − [(x(1) + x(5)) + (x(3) + x(7))]  

                               

      X(6) = [(x(0) + x(4)) − (x(2) + x(6))]  

 

                             − [(x(1) + x(5)) − (x(3) + x(7))]                           

 

     X(1) = [x(0) − x(4)] + [x(2) − x(6)]  

 

                                                      + c [x(1) − x(5)] 
                                

       X(3) = [x(0) − x(4)] − [x(2) − x(6)] 

 

                                                      + c [x(3) − x(7)]  

                               

       X(5) = [x(0) − x(4)] + [x(2) − x(6)] 

 

                                                       − c [x(1) − x(5)]  

                                

       X(7) = [x(0) − x(4)] − [x(2) − x(6)] 

  

                                                       − c [x(3) − x(7)]         

                        

 

                Where c = 2  
 

IV. ARITHMETIC COST 

 Let ADHT(N) and MDHT(N) denote the number of 

additions and multipliers for computing DHT(N). We 

have 

 

 MDHT(N) =2MDHT(N/2) + (1/2)N                   (10)                                                

                

 ADHT(N) =2ADHT(N/2) + (9/4)N − 1              (11)                                                      

 

  where MDHT(8) = 2 and ADHT(8) = 16. 

 

 Solving the recursions (10) and (11), we obtain 
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Table 1: Computational Complexity 

 

 

 

 

 

 

 

 
 

 

 

 

               Table I lists the required number of 

multiplications and additions for the proposed algorithm, 

the Sorensen one and Bialgorithm, where rotations are 

implemented with four multiplications and two addition 

and with three multiplications and three additions.The 

values of M in the proposed algorithm are computed 

considering that the multipliers with the same constant 

are shared. The number of multipliers  is significantly 

greater than that in the proposed one. The number of 

multipliers for Bi algorithm where rotations are 

implemented with four multiplications and two additions 

is greater than the necessary number of multipliers for 

our algorithm and slightly smaller when the rotations are 

implemented with three multiplications and three 

additions.  

 

            However, the split-radix algorithm has an 

irregular structure and is difficult to be implemented in 

hardware as opposed to our algorithm that has a regular 

and modular structure and can be very easily 

implemented in parallel as it will be shown in Section 

VI for a DHT of length N = 32. 

 

V.PARALLEL ARCHITECTURE 
In order to clearly illustrate the features and advantages 

of the proposed algorithm, the VLSI architecture for a 

DHT of length N = 32 is presented in Fig. 1(a) and (b). It 

can be seen that the proposed architecture is highly 

parallel and has a modular and regular structure being 

formed of only a few blocks: U, MUL, ADD/SUB, 

XCH, and a few additional adders/subtracters. The“U” 

blocks implement (20), XCH blocks interchange the 

values and are simply implemented in hardware by 

appropriate wiring, and MUL blocks are used to 

implement the shared multipliers with a constant.  

 

This block contains four multipliers with a constant. 

Each multiplier is shared by four input sequences that 

are multiplied with the same constant in an interleaved 

manner using multiplexers and demultiplexers 

controlled by two clocks. One of the advantages of this 

algorithm and architecture is the fact that the 
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multiplications with the same constant are share the 

MUL blocks.  

 

Thus, the number of multipliers is significantly less than 

the value 40 given in Table I which has become now 

only 16. 

 

 

 
 
 

 

 
 

Figure.1. (a) VLSI architecture for DHT of length N = 32 . 

(b) VLSI architecture for DHT of length N = 32.  

 

 

The proposed architecture has a high throughput of 32 

samples per clock and can be pipelined. It is highly 

parallel using a low hardware complexity structure. The 

multipliers with a constant in MUL blocks can be 

efficiently implemented in hardware. 

 

 

 

 
                          Figure.2. Case Diagram 

 

 The input bits are applied to the DHT transform 

architecture to optimize the internal operation. The DHT 

transform is used to optimize the adder , subtractor and 

the multiplier unit. Basically the subtraction operation 

consists more number of logic gates. The subtractor unit 

is used to reduce the logic gates function and to optimize 

the subtractor unit for DHT transform process. 

                     VI.   CONCLUSION 

In this brief, a new highly parallel VLSI algorithm for 

the computation of a length-N = 2n DHT having a 

modular and regular structure has been presented. 

Moreover, this algorithm can be implemented on a 

highly parallel architecture having a modular and regular 

structure with a low hardware complexity by extensively 

using a subexpression sharing technique and the sharing 

of multipliers having the same constant. 
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