
 New VLSI Architecture for Audio Compression

Using Parallel Computation

 Suganthi s

 1
, Thiruveni M

2

1PG Student, VLSI Design, PSNA College of Engineering and Technology, Dindigul,

Tamil Nadu, India

Corresponding author: suganthiraj50@gmail.com
2Assistant Professor, Department of Electronics and Communications,

PSNA College of Engineering and Technology, Dindigul, Tamil Nadu, India

Abstract -In this paper, we propose a new very large scale

integration (VLSI) algorithm for a 2N-length discrete

Hartley transform (DHT) that can be efficiently

implemented on a highly modular and parallel VLSI

architecture. In the existing system the conventional

discrete Hartley transformation is used. In that system has

more number of multipliers which leads to more cost and

high complexity in VLSI Architectures. To overcome this

demerit, New Discrete Hartley transformation is going to

be proposed. The proposed DHT components can be

separated as even and odd components and the

computation can be done parallely.The DHT algorithm can

be efficiently split on several parallel parts that can be

executed concomitantly. The proposed DHT architecture is

well-matched for the sub expression sharing technique.

Sub expression technique is used when one data is

multiplied with many constants or sum of product. So it

reduces the number of multiplications which in turn

reduce the hardware complexity, delay and cost.

Keywords: Discrete Hartley transform (DHT), DHT

domain processing, fast algorithms.

 I.INTRODUCTION

The Discrete Fourier transform (DFT) is used in many

digital signal processing applications as in signal and

image compression techniques, filter banks, signal

representation, or harmonic analysis. The discrete

Hartley transform (DHT) can be used to efficiently

replace the DFT when the input sequence is real. In the

literature, there are some fast algorithms for the

computation of DHT and some algorithms for the

computation of generalized DHT. There are also several

split-radix algorithms for computing DHT with a low

arithmetic cost. Thus, Sorensen et al. and Malvar

proposed split-radix algorithms for DHT with a Low

arithmetic cost. Bi proposed another split-radix

algorithm where the odd-indexed transform outputs is

computed using an indirect method. The classical split-

radix algorithm is difficult to implementation of VLSI

due to its irregular computational structure and due to

the fact that the butterflies significantly differ from stage

to stage. Thus, it is necessary to derive new such

algorithms that are suited for a parallel VLSI system

.There are also in the literature several fast algorithms

that use a recursive strategy for discrete cosine

transform (DCT) and for generalized DHT. Since DHT

is computationally intensive, it is necessary to derive

dedicated hardware implementations using the VLSI

technology. One category of VLSI implementations is

represented by systolic arrays. There are many systolic

array implementations of DHT. Systolic array

architectures are modular and regular, but they use

particularly pipelining and not parallel processing to

obtain a high-speed processing. In the literature, highly

parallel solutions were also proposed.

 The DHT can be computed from the DFT of a real-

valued sequence, so FFT algorithms optimized for real-

valued sequences must also be considered viable fast

algorithms for computation of the discrete Hartley

transform. The operation counts for the FHT algorithms

are determined and compared to the counts for

corresponding real-valued FFT algorithms. A unified

development of algorithms for the real-valued FFT and

the DHT gives insight into both the discrete Hartley

transform and fast algorithms. Using this filter collateral

a desired output is generated, it can be used as a part for

mass updating to be observe using conventional LMS

adaptive algorithm. It is suitable in many real time DSP

processing such as adaptive filters. The conventional

LMS adaptive algorithm, is used for real-time operation

and this algorithm used to the conventional existing

systems.

International Journal of Advanced and Innovative Research (2278-7844) / # 242 / Volume 4 Issue 2

 © 2015 IJAIR. All Rights Reserved 242

 We have a highly parallel solution for the

implementation of DHT based on a direct

implementation of fast Hartley transform (FHT).

It is worth to note that hardware implementations of

FHT are rare. Multipliers in a VLSI structure consume a

large portion of the chip area and introduce significant

delays. This is the reason why memory-based solutions

to implement multipliers have been more and more used

in the literature. To efficiently implement multipliers

with lookup-table-based solutions, it is necessary that

one operand to be a constant. When one of the operands

is constant, it is possible to store all the partial results in

a ROM, and the number of memory words is

significantly reduced from 22L to 2L.

 In this paper we proposed a new VLSI DHT algorithm

that is well suited for a VLSI implementation on a

highly parallel and Modular architecture . It can be used

for designing a completely novel VLSI architecture for

DHT. Moreover, using sub expression sharing technique

and sharing the multipliers with the same constant, the

hardware complexity can be significantly reduced the

number of multipliers being very small, significantly

less than that in. In the proposed solution, we have used

only multipliers with a constant that can be efficiently

implemented in VLSI. The proposed solution is not only

appealing by its high level of parallelism and by using a

modular and regular structure but it can be also used to

obtain a small hardware complexity by extensively

sharing the common blocks.

II. ALGORITHM FOR DHT

The discrete Hartley transform is a linear, invertible

function H : R
n
 -> R

n
 (where R denotes the set of real

numbers). The N real numbers x0,, xN-1 are

transformed into the N real numbers H0, ..., HN-1

according to the formula

)]
2

sin()
2

[cos(
1

0

nk
N

nk
N

xH
N

n

nK








 (1)

Where K = 0,…………,N-1

 cos(x) + sin(x) = cas(x).

 .

The cas function is the sum of sine and cosine function.

We can compute a N-length DHT using a new algorithm

given by the following relations:

XN(k) {x(i)} = XN/2(k) {x(2i)} + u(0) · sin(2kπ/N)

 +[XN/2(k) {u(i)} − u(0)/ 2]

 . 2 · cos(2kπ/N) (2)

XN(N/2 + k) {x(i)} = XN/2(k) {x(2i)} − u(0) ·

sin(2kπ/N) –[XN/2(k) {u(i)} − u(0)/2]

 . 2 · cos(2kπ/N)]

for k = 0, 1, . . .,N/4 − 1 (3)

 XN(N/2 − k) {x(i)} = XN/2(N/2 − k) {x(2i)}

 + u(0) · sin(2kπ/N -[XN/2(N/2 − k) {u(i)} −

u(0)/2]· 2 · cos(2kπ/N) (4)

 XN(N − k) {x(i)} = XN/2(N/2 − k) {x(2i)} − u(0) ·

sin(2kπ/N)+[XN/2(N/2 − k) {u(i)} − u(0)/2]

· 2 · cos(2kπ/N) for k = 1, . . . , N/4 (5)

 Where

 XN/2(k) {x(2i)} =






12/

0 2/
2[).2(

N

t N
kicasix


] (6)

 XN/2(k) {u(i)} =

]
2/

2[).(
12/

0






N

t N
kicasiu


 (7)

are DHT of length N/2, with {u(i) : i = 0, 1, . . .,N/2 − 1}

an auxiliary input sequence given by

 u(N/2 − 1) =x(N − 1) (8)

 u(i) =x(2i + 1) − u(i + 1)

 for i = N/2 − 2, . . . , 1, 0. (9)

For the computation of (2)–(5), there are necessary

extra7N/4 additions and N/2 multiplications, if we share

the multipliers with the same constant. For the

computation of the auxiliary input sequence using (8)

and (9), there are necessary extra N/2 − 1 additions. The

obtained algorithm can be used as a VLSI algorithm

where the number of multipliers can be significantly

reduced by sharing the multipliers with the same

constant.

III. PROPOSED STRUCTURE

An efficient implementation of a fast DHT algorithm

closely depends on an efficient algorithm for a small

DHT. We present here an efficient DHT algorithm for a

length N = 8

International Journal of Advanced and Innovative Research (2278-7844) / # 243 / Volume 4 Issue 2

 © 2015 IJAIR. All Rights Reserved 243

http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Real_number

 X(0) = [(x(0) + x(4)) + (x(2) + x(6))]

 + [(x(1) + x(5)) + (x(3) + x(7))]

 X(2) = [(x(0) + x(4)) − (x(2) + x(6))]

 + [(x(1) + x(5)) − (x(3) + x(7))]

 X(4) = [(x(0) + x(4)) + (x(2) + x(6))]

 − [(x(1) + x(5)) + (x(3) + x(7))]

 X(6) = [(x(0) + x(4)) − (x(2) + x(6))]

 − [(x(1) + x(5)) − (x(3) + x(7))]

 X(1) = [x(0) − x(4)] + [x(2) − x(6)]

 + c [x(1) − x(5)]

 X(3) = [x(0) − x(4)] − [x(2) − x(6)]

 + c [x(3) − x(7)]

 X(5) = [x(0) − x(4)] + [x(2) − x(6)]

 − c [x(1) − x(5)]

 X(7) = [x(0) − x(4)] − [x(2) − x(6)]

 − c [x(3) − x(7)]

 Where c = 2

IV. ARITHMETIC COST

 Let ADHT(N) and MDHT(N) denote the number of

additions and multipliers for computing DHT(N). We

have

 MDHT(N) =2MDHT(N/2) + (1/2)N (10)

 ADHT(N) =2ADHT(N/2) + (9/4)N − 1 (11)

 where MDHT(8) = 2 and ADHT(8) = 16.

 Solving the recursions (10) and (11), we obtain

)5(log
2

1
2)( NNM NDHT (12)

 1
8

39
log

4

9
2)( NNNA NDHT (13)

Table 1: Computational Complexity

 Table I lists the required number of

multiplications and additions for the proposed algorithm,

the Sorensen one and Bialgorithm, where rotations are

implemented with four multiplications and two addition

and with three multiplications and three additions.The

values of M in the proposed algorithm are computed

considering that the multipliers with the same constant

are shared. The number of multipliers is significantly

greater than that in the proposed one. The number of

multipliers for Bi algorithm where rotations are

implemented with four multiplications and two additions

is greater than the necessary number of multipliers for

our algorithm and slightly smaller when the rotations are

implemented with three multiplications and three

additions.

 However, the split-radix algorithm has an

irregular structure and is difficult to be implemented in

hardware as opposed to our algorithm that has a regular

and modular structure and can be very easily

implemented in parallel as it will be shown in Section

VI for a DHT of length N = 32.

V.PARALLEL ARCHITECTURE
In order to clearly illustrate the features and advantages

of the proposed algorithm, the VLSI architecture for a

DHT of length N = 32 is presented in Fig. 1(a) and (b). It

can be seen that the proposed architecture is highly

parallel and has a modular and regular structure being

formed of only a few blocks: U, MUL, ADD/SUB,

XCH, and a few additional adders/subtracters. The“U”

blocks implement (20), XCH blocks interchange the

values and are simply implemented in hardware by

appropriate wiring, and MUL blocks are used to

implement the shared multipliers with a constant.

This block contains four multipliers with a constant.

Each multiplier is shared by four input sequences that

are multiplied with the same constant in an interleaved

manner using multiplexers and demultiplexers

controlled by two clocks. One of the advantages of this

algorithm and architecture is the fact that the

International Journal of Advanced and Innovative Research (2278-7844) / # 244 / Volume 4 Issue 2

 © 2015 IJAIR. All Rights Reserved 244

multiplications with the same constant are share the

MUL blocks.

Thus, the number of multipliers is significantly less than

the value 40 given in Table I which has become now

only 16.

Figure.1. (a) VLSI architecture for DHT of length N = 32 .

(b) VLSI architecture for DHT of length N = 32.

The proposed architecture has a high throughput of 32

samples per clock and can be pipelined. It is highly

parallel using a low hardware complexity structure. The

multipliers with a constant in MUL blocks can be

efficiently implemented in hardware.

 Figure.2. Case Diagram

 The input bits are applied to the DHT transform

architecture to optimize the internal operation. The DHT

transform is used to optimize the adder , subtractor and

the multiplier unit. Basically the subtraction operation

consists more number of logic gates. The subtractor unit

is used to reduce the logic gates function and to optimize

the subtractor unit for DHT transform process.

 VI. CONCLUSION

In this brief, a new highly parallel VLSI algorithm for

the computation of a length-N = 2n DHT having a

modular and regular structure has been presented.

Moreover, this algorithm can be implemented on a

highly parallel architecture having a modular and regular

structure with a low hardware complexity by extensively

using a subexpression sharing technique and the sharing

of multipliers having the same constant.

 ACKNOWLEDGEMENTS
The authors thank the Management and Principal of

P.S.N.A College of Engineering and Technology for

providing good platform and encouragement.

International Journal of Advanced and Innovative Research (2278-7844) / # 245 / Volume 4 Issue 2

 © 2015 IJAIR. All Rights Reserved 245

REFERENCES
[1] P. K. Meher, “LUT optimization for memory-based

computation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.

57, no. 4, pp. 285–289, Apr. 2010.

[2] P. K. Meher, “New approach to look-up table design and

memory-based realization of FIR digital filters,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 57, no. 3, pp. 592–603,

Mar. 2010.

[3] D. F. Chiper and P. Ungureanu, “Novel VLSI algorithm and

architecture with good quantization properties for a high-

throughput area efficient systolic array implementation of

DCT,” EURASIP J. Adv. Signal Process., vol. 2011, no. 1,

pp1–14, Jan. 2011.

[4] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “New

parametric discrete Fourier and Hartley transforms, and

algorithms for fast compu-tation,” IEEE Trans. Circuits Syst.

I, Reg. Papers, vol. 58, no. 3, pp. 562– 575, Mar. 2011.

[5] J. S. Wu, H. Z. Shu, L. Senhadji, and L. M. Luo, “Radix 3 × 3

algorithm for the 2-D discrete Hartley transform,” IEEE

Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 6, pp. 566–

570, Jun. 2008.

[6] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A split

vector-radix algorithm for the 3-D discrete Hartley

transform,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53,

no. 9, pp. 1966–1976, Sep. 2006.

[7] D. F. Chiper, “Radix-2 fast algorithm for computing discrete

Hartley transform of type III,” IEEE Trans. Circuits Syst. II,

Exp. Briefs, vol. 59, no. 5, pp. 297–301, May 2012.

[8] H. Z. Shu, J. S. Wu, C. F. Yang, and L. Senhadji, “Fast radix-3

algorithm for the generalized discrete Hartley transform of

type II,” IEEE Signal Process. Lett., vol. 19, no. 6, pp. 348–

351, Jun. 2012.

[9] D. F. Chiper, “Fast radix-2 algorithm for the discrete Hartley

transform of type II,” IEEE Signal Process. Lett., vol. 18, no.

11, pp. 687–689, Nov. 2011.

[10] R I. Hartley, “Subexpression sharing in filters using canonic

signed digit multipliers,” IEEE Trans. Circuits Syst.

II, Analog Digit. Signal Process.,vol. 43, no. 10, pp. 677–688,

Oct. 1996.

International Journal of Advanced and Innovative Research (2278-7844) / # 246 / Volume 4 Issue 2

 © 2015 IJAIR. All Rights Reserved 246

