
 AN EFFICIENT CONCURRENT ACCESS ON CLOUD

 DATABASE USING SECUREDBAAS

G.Elakkia
M.E., ComputerScience and Engineering

RVS technical campus, coimbatore

Anna University, Chennai.

Abstract: In distributed database system, cloud services

provide high availability and scalability, but they raise

many concerns about data confidentiality. SecureDBaas

guarantees data Confidentiality by allowing a cloud

database server to execute concurrent SQL operations

over encrypted data and the possibility of executing

concurrent operations on encrypted data. It’s

supporting geographically distributed clients to connect

directly to an encrypted cloud database, and to execute

concurrent and independent operations including those

modifying the database structure. The proposed

architecture has the further advantage of eliminating

intermediate proxies that limit the elasticity,

availability, and scalability properties that are intrinsic

in cloud-based solutions. SecureDBaas that support the

execution of concurrent and independent operations to

the remote encrypted database from many

geographically distributed clients. It is compatible with

the most popular relational database servers, and it is

applicable to different DBMS implementation. It

provides guarantees to data confidentially by allowing a

cloud database server to execute concurrent SQL

operations over encrypted data.

Keywords- Database, SecureDBaaS, Cloud, Security

1 INTRODUCTION

1.1 CLOUD COMPUTING SECURITY

Cloud security is an evolving sub-domain of

computer security, network security, and, more

broadly, information security. It refers to a broad set

of policies, technologies, and controls deployed to

protect data, applications, and the associated

infrastructure of cloud computing. Cloud security

architecture is effective only if the correct defensive

implementations are in place. Efficient cloud security

architecture should recognize the issues that will arise

with security management. The security management

addresses these issues with security controls. These

controls are put in place to safeguard any weaknesses

in the system and reduce the effect of an attack.

While there are many types of controls behind cloud

security architecture, they can usually be found in

one of the following categories:

1.1.1 Deterrent controls
These controls are intended to reduce attacks on a

cloud system. Much like a warning sign on a fence or

a property, deterrent controls typically reduce the

threat level by informing potential attackers that there

will be adverse consequences for them if they

proceed. [Some consider them a subset of preventive

controls].

1.1.2 Preventive controls
Preventive controls strengthen the system against

incidents, generally by reducing if not actually

eliminating vulnerabilities. Strong authentication of

cloud users, for instance, makes it less likely that

unauthorized users can access cloud systems, and

more likely that cloud users are positively identified.

1.1.3 Detective controls
Detective controls are intended to detect and react

appropriately to any incidents that occur. In the event

of an attack, a detective control will signal the

preventative or corrective controls to address the

issue. System and network security monitoring,

including intrusion detection and prevention

arrangements, are typically employed to detect

attacks on cloud systems and the supporting

communications infrastructure.

1.1.4 Corrective controls
Corrective controls reduce the consequences of an

incident, normally by limiting the damage. They

come into effect during or after an incident. Restoring

system backups in order to rebuild a compromised

system is an example of a corrective control.

1.2 CLOUD DATABASE

A database accessible to clients from the cloud and

delivered to users on demand via the Internet from a

cloud database provider's servers. Also referred to as

Database-as-a-Service (DBaaS)[8], cloud databases

can use cloud computing to achieve optimized

scaling, high availability, multi-tenancy and effective

resource allocation. While a cloud database can be a

traditional database such as a MySQL or SQL Server

database that has been adopted for cloud use, a native

cloud database such as Xeround's MySQL Cloud

database tends to better equipped to optimally use

cloud resources and to guarantee scalability as well

as availability and stability. Cloud databases can

 © 2015 IJAIR. All Rights Reserved 100

International Journal of Advanced and Innovative Research (2278-7844) / # 100 / Volume 4 Issue 2

offer significant advantages over their traditional

counterparts, including increased accessibility,

automatic failover and fast automated recovery from

failures, automated on-the-go scaling, minimal

investment and maintenance of in-house hardware,

and potentially better performance.

Cloud DBMS (CDBMS) as a distributed database

that delivers a query service across multiple

distributed database nodes located in multiple

geographically-distributed data centers, both

corporate data centers and cloud data centers [6]. A

query can originate from anywhere; from a PC within

the corporation, which is connected by a fast line to

the local data centre, from a PC in the home via a

VPN line, from a laptop via a Wi-Fi connection, or

from a smart phone via a 3G or 4G connection. For

that reason we represent a query here as coming

“through the Internet” implying that the response will

possibly travel through the Internet too.

2 EXISTING SYSTEM
Existing System contain Proxy based cloud database,

that requires any client operation should pass through

one intermediate server but it is not suitable to cloud-

based scenarios, in which multiple clients typically

distributed among different locations, and need

concurrent access to data stored in the same DBMS.

If proxy fails then we cannot perform transaction

between client and server and Policy inconsistencies

during policy updates due to the consistency model.

Encrypting blocks of data instead of each data item

[8]. Whenever a data item that belongs to a block is

required, the trusted proxy needs to retrieve the

whole block, to decrypt it, and filter out unnecessary

data that belong to the same block. Then it requires

heavy modification of the original SQL operation

produced by each client. Thereby it causes significant

overheads on both the DBMS server and the trusted

proxy. Prevent one cloud provider to read its portion

of data, but information can be reconstructed by

cloud provider and allow Execution of operations

over encrypted data. These approaches preserve data

confidentiality, where DBMS is not trusted [3]. It

requires modified DBMS software used by cloud

provider. Proxy-less architectures that store metadata

in the clients.

Some DBMS engine offers the possibility of

encrypting data at the file system level. It means

transparent data Encryption feature. This feature

makes it possible to build a trusted DBMS over

untrusted storage.

Focused on different usage contexts, including data

manipulation, modification to the database structure

and does not provide data confidentiality for database

as a service. Trusted proxy that characterize and

facilitates the implementation of a secureDBaaS, and

is applicable to multitier web application. Its causes

several drawbacks. Since the proxy is trusted, its

functions cannot be outsourced to an untrusted cloud

provider. Hence, the proxy is meant to be

implemented and managed by the cloud tenant.

Availability, scalability, and elasticity of the whole

secureDBaaS service are then bounded by

availability, scalability, and elasticity of the trusted

proxy that becomes a single point of failure and a

system bottleneck. Proxy is meant to implemented

and managed by cloud tenant. There are several

solutions ensuring confidentiality for the storage as a

service by using sql aware encryption [13]:

3 PROPOSED SYSTEM

3.1 SECUREDBAAS
SecureDBaaS is designed to allow multiple and

independent clients to connect directly to the

untrusted cloud DBaaS without any intermediate

server a cloud database service from an untrusted

DBaaS provider [8]

SecureDBaaS architecture is tailored to cloud

platforms and does not introduce any intermediary

proxy or broker server between the client and the

cloud provider.

Tenant then deploys one or more machines (Client 1

through N) and installs a SecureDBaaS client on each

of them. This client allows a user to connect to the

cloud DBaaS to administer it, to read and write data,

and even to create and modify the database tables

after creation. SecureDBaaS includes plaintext data,

encrypted data, metadata, and encrypted metadata.

Plaintext data consist of information that a tenant

wants to store and process remotely in the cloud

DBaaS. To prevent an un trusted cloud provider from

violating confidentiality of tenant data stored in plain

form, SecureDBaaS adopts multiple cryptographic

techniques to transform plaintext data into encrypted

tenant data and encrypted tenant data structures

because even the names of the tables and of their

columns must be encrypted. SecureDBaaS clients

produce also a set of metadata consisting of

information required to encrypt and decrypt data as

well as other administration information. Even

metadata are encrypted and stored in the cloud

DBaaS.

SecureDBaaS that supports the execution of

concurrent and independent operations to the remote

encrypted database from many geographically

distributed clients as in any unencrypted DBaaS

setup. It is compatible with the most popular

 © 2015 IJAIR. All Rights Reserved 101

International Journal of Advanced and Innovative Research (2278-7844) / # 101 / Volume 4 Issue 2

relational database servers, and it is applicable to

different DBMS implementations.

 Figure 3.1 SecureDBaas Architecture

3.2 DATA AND METADATA MANAGEMENT
The tenants data are saved in a relational database

have to preserve the confidentiality of the stored data

and even of the database structure because table and

column names may yield information about saved

data. Distinguish the strategies for encrypting the

database structures and the tenant data. Encrypted

tenant data are stored through secure tables into the

cloud database. To allow transparent execution of

SQL statements, each plaintext table is transformed

into a secure table because the cloud database is

untrusted. The name of a secure table is generated by

encrypting the name of the corresponding plaintext

table. Table names are encrypted by means of the

same encryption algorithm and an encryption key that

is known to all the Secure DBaaS clients. Hence, the

encrypted name can be computed from the plaintext

name. On the other hand, column names of secure

tables are randomly generated by SecureDBaaS;

hence, even if different plaintext tables have columns

with the same name, the names of the columns of the

corresponding secure tables is different. This design

choice improves confidentiality by preventing an

adversarial cloud database from guessing relations

among different secure tables through the

identification of columns having the same encrypted

name.

that should be used when SQL statements operate on

one column; the values of this column are encrypted

through a randomly generated encryption key that is

not used by any other column.

referenced by join operators, foreign keys, and other

operations involving two columns; the two columns

are encrypted through the same key.

Metadata generated by SecureDBaaS contain all the

information that is necessary to manage SQL

statements over the encrypted database in a way

transparent to the user. Metadata management

strategies represent an original idea because

SecureDBaaS is the first architecture storing all

metadata in the untrusted cloud database together

with the encrypted tenant data.

Figure 4.2 Structure of Table Metadata

3.3 SEQUENTIAL AND CONCURRENT SQL

OPERATIONS
The SQL operations in SecureDBaaS by considering

an initial simple scenario inwhich assume that the

cloud database is accessed by one client. The first

connection of the client with the cloud DBaaS is for

authentication purposes. SecureDBaaS relies on

standard authentication and authorization

mechanisms provided by the original DBMS server.

After the authentication a user interacts with the

cloud database through the SecureDBaaS client.

SecureDBaaS analyzes the original operation to

identify which tables are involved and to retrieve

their metadata from the cloud database. The metadata

are decrypted through the master key and their

information is used to translate the original plain

SQL into a query that operates on the encrypted

database.

The support to concurrent execution of SQL

statements issued by multiple independent (and

possibly geographically distributed) clients is one of

the most important benefits of SecureDBaaS with

respect to state-of-the-art solutions. Our architecture

must guarantee consistency among encrypted tenant

data and encrypted metadata because corrupted or

out-of-date metadata would prevent clients from

decoding encrypted tenant data resulting in

permanent data losses. A thorough analysis of the

 © 2015 IJAIR. All Rights Reserved 102

International Journal of Advanced and Innovative Research (2278-7844) / # 102 / Volume 4 Issue 2

possible issues and solutions related to concurrent

SQL operations on encrypted tenant data and

metadata is contained.

3.4 ALGORITHM

RSA(Rivest-Shamir-Adleman) widely accepted and

implemented general-purpose approach to public-key

encryption.

Plaintext is encrypted in block having a binary value

less than some number. Both sender and

receiver must know the value of n. The sender knows

the values of e, and only the receiver knows the

values of d. This is a public-key encryption algorithm

with a public key of PU={e,n} and a private key of

PR={d,n}.

Encryption and decryption are the following form,

for some plaintext block M and cipher block C.

 C= M
e
mod n

M= C
d
 mod n = (M

e
)

d
 mod n

For this algorithm to be satisfactory for public-key

encryption, the following requirement must be met.

 It is possible to find values of e,d,n such that

M
e
mod n=M for all M<n.

 It is relatively easy to calculate M
e
 mod n

and C
d
 mod n for all values of M<n.

 It is infeasible to determine d given e and n.

Encryption by Bob with Alice’s public key:

Plain text : M<n

Cipher text : C= M
e
mod n

Decryption by Alice with Alice’s Public key:

Cipher text : M<n

Plain text : C= M
e
mod n

4 CONCLUSIONS

In the encrypted cloud database an innovative

architecture that guarantees confidentiality of data

stored in public cloud databases. Unlike state-of-the-

art approaches, our solution does not rely on an

intermediate proxy that we consider a single point of

failure and a bottleneck limiting availability and

scalability of typical cloud database services. A large

part of the research includes solutions to support

concurrent SQL operations (including statements

modifying the database structure) on encrypted data

issued by heterogeneous and possibly geographically

dispersed clients.

5 FUTURE ENHANCEMENTS

In this future work identifies consistency issues

related to concurrent execution of queries over

encrypted data and to propose viable solutions for

different usage contexts, including data modification

to the database structure, and data re-encryption.

Data, policy, and credential inconsistency problems

that can emerge as transactional database systems are

deployed to the cloud. Data re-encryption context is

to investigate that arise when clients re-encrypt data

stored in the cloud database. This occurs when it is

required to change encryption keys, or to use a

different encryption algorithm to guarantee

confidentiality. A re-encryption command that

modifies the encryption key that is used to encrypt

customer data stored in the table Tenc. The client

first reads the current metadata (MR[T]) associated

with the encrypted customer data to retrieve all the

information related to their encryption policy,

current encryption keys. Then, it updates the

metadata (MW[T]) according to the new encryption

policy, by changing the encryption keys. Hence, the

client needs to read all the data (R[Tenc]), to decrypt

them with the old encryption keys, to encrypt them

with the new encryption keys and to write new data

to the encrypted table (W[Tenc]). Decryption and

encryption operations have to be performed locally

by a trusted client because the client never exposes

data to the untrusted cloud database.

Re-encryption and data read The database may

return data that are not accessible by the client, if a

data read command is executed concurrently to a re-

encryption command. The case in which a data read

command requires a set of data whose encryption key

is being modified by a concurrent re-encryption

command.

Re-encryption and data write Inconsistent data may

be written if the data write command and a re-

encryption command are executed concurrently. The

case in which a data write command stores a set of

data whose encryption key is being modified by a

concurrent re-encryption command.

REFERENCES
[1] D. Agrawal, A.E. Abbadi, F.Emekci, and A.Metwally,

“Database Management as a Service: Challenges and

opportunities,” Proc. 25th IEEE Int’l Conf. Data Eng.,

Mar.-Apr. 2009

[2] M. Armbrust et al., “A View of Cloud Computing,”

Comm. Of the ACM, vol. 53,no.4, pp. 50-58, 2010.

[3] E. Damiani, S.D.C. Vimercati, S. Jajodia, S. Paraboschi,

and P. Samarati, “Balancing Confidentiality and Efficiency

in untrusted Relational Dbmss,” Proc. Tenth ACM Conf.

Computer and Comm. Security, Oct. 2003.

[4] A.J. Feldman, W.P. Zeller, M.J. Freedman, and E.W.

Felten,”SPORC:Group Collaboration Using Untrusted

Cloud Re-Sources,” Proc. Ninth USENIX Conf. Operating

Systems Design and Implementation, Oct. 2010.

[5] L. Ferretti, M.Colajanni, and M.Marchetti,” Suppoting

Security and Consistency for CloudDatabase,” Proc. Fourth

Int’I Symp.Cyberspace Safety and Security, Dec.2012.

[6] V. Ganapathy, D. Thomas, T. Feder, H. Garcia-Molina,

and R. Motwani,” Distributing Data for Secure Database

Services,” Proc.Fourth ACM Int’I Workshop Privacy and

Anonymity in the Information Soc., Mar. 2011.

 © 2015 IJAIR. All Rights Reserved 103

International Journal of Advanced and Innovative Research (2278-7844) / # 103 / Volume 4 Issue 2

[7] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra,

“Executing SQL over Encrypted Data in the Database-

Service-Provider Model,” Proc. ACM SIGMOD Int’I Conf.

Management Data, June 2002.

[8] H. Hacigumus, B. Iyer, and S. Mehrotra,”Providing

Database as a Service,” Proc. 18th IEEE Int’l Conf. Data

Eng., Feb.2002.

[9] J. Li,M .Krohn, D. Mazieres, and D. Shasha, “Secure

Untrusted Data Repository (SUNDR),” Proc. Sixth

USENIX Conf. Operating Systems Design and

Implementation, Oct. 2004.

[10] J. Li and E. Omiecinski, “Efficiency and Security

Trade-Off in Supporting Range Queries on Encrypted

Databases,” Proc. 19th Ann. IFIP WG 11.3 Working Conf.

Data and Applications Security, Aug. 2005.

[11] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M.

Dahlin, and M. Walfish, “Depot: Cloud Storage with

Minimial Trust,” ACM Trans. Computer Systems, vol.29,

no.4, article 12, 2011.

[12] E. Mykletun and G. Tsudik,” Aggregation Queries in

the Database-as-a-Service Model,” Proc. 20th Ann. IFIP

WG 11.3 Working Conf. Data and Applications Security,

July/Aug.2006.

[13] R.A. Popa, C.M.S. Redfield,N. Zeldovich, and H.

Balakrishnan,”CryptDB: Protecting Confidentiality with

Encrypted Query Processing,” Proc.23rd ACM Symp.

Operating System Principles, Oct. 2011.

[14] B. White, J. Lepreau, L. Stoller, R. Ricci, S.

Guruprasad, M. Newbold, M. Hibler, C. Barb, and A.

Joglekar,” An integrated Experimental Environment for

Distributed System and Networks,” Proc. Fifth USENIX

Conf. Operating System Design and Implementation, Dec.

2002.

 © 2015 IJAIR. All Rights Reserved 104

International Journal of Advanced and Innovative Research (2278-7844) / # 104 / Volume 4 Issue 2

