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Abstract — Study a variation of the probability of M/D/c 

queueing model in which service time of customers is 

deterministic. The number of server channel modified depending 

on the length of queue. Specifically, apart from the regular 

number of server, we can increase the number of server. The 

model represents situations such as when the system requires a 

new server depending on the length of the queue can be provided, 

so that the waiting time can be reduce. 
 

Keywords— Queueing models FCFS; M/D/c; Poisson 

distribution; Queue; Utilization factor; Waiting time. 

 
I. INTRODUCTION 

 
The mathematical study of waiting lines is known as 

Queueing Theory. Queueing Theory was originally developed 

mostly in the context of telephone traffic engineering but it 

has found applications in several disciplines such as 

engineering, operation research, and computer science, with 

practical applications in such areas as layout of manufacturing 

systems, airport traffic modeling, measurement of computer 

performances, analysis of traffic control, study of 

telecommunications systems and even to model decision-

making to replace a goalie in a hockey game. The earliest 

mention of Queueing Theory was made in 1909 in a paper by 

A.K. Erlang. In 1951 David G. Kendall provided a systematic 

treatment of the study of basic queues and included in his 

paper the first mention ever of the term “queueing systems”. 

Later in 1953, Kendall also introduced a formal classification 

of queueing systems. Since then, various queueing models and 

their analyses have occupied a voluminous part of the 

operations research literature. 

 

 

II. THE NOTATION 

 

As mentioned earlier, Queueing Theory has been successfully 

used to model, analyze, and solve complex systems, using 

analytical, numerical, and simulation techniques [1]. A basic 

queueing system is specified by identifying the essential 

components that make up such a system- arrival process, 

service process, number of servers, buffer size to hold waiting 

entities, size of the calling population, and service priority. A 

system is indicated in a notational form A/S/N/C/P/D. The 

arrival process, A, is denoted by specifying the 6 distributions 

of inter-arrival times. For example, if the inter-arrival times 

are exponentially distributed, the letter M is used. This is due 

to the Markovian, or memory-less property of the exponential 

distribution. If the inter-arrival times are assumed to be 

independent and have an arbitrary, general distribution, the 

notation of GI is used. Another common interarrival 

distribution is an Erlang distribution of the order k. This is the 

distribution of the sum of k independent and identically 

distributed (i.i.d) exponential random variables. This 

distribution is denoted by the symbol Ek. A generalization of 

the Erlang distribution in which the inter-arrival times are 

associated with the times of absorption in a finite-state 

Markov process with one absorbing state, is known as the 

phase-type distribution [10]. The notation used to indicate 

such a distribution is PH. various other inter-arrival time 

distributions have been used in the literature to model specific 

queueing systems. The second parameter S stands for the 

service process and is indicated in a way similar to the arrival 

process described above. The parameter N indicates the 

number of servers, C represents the maximum system capacity, 

the population size is denoted by P and D stands for the 

service discipline such as first in first out, last in first out, 

random. By default, system capacity and population size are 

taken to be infinite and the service is process is assumed to be 

first-in-first out. A good review of a variety of queueing 

models can be found in [1] and [7]. 

 

III. QUEUING MODELS AND KENDALL’S 

NOTATION 

 

In most cases, queuing models can be characterized by the 

following factors:  

 

A. Arrival time distribution. Inter-arrival times most 

commonly fall into one of the following distribution 

patterns: a Poisson distribution, a Deterministic 

distribution, or a General distribution. However, 

inter-arrival times are most often assumed to be 

independent and memoryless, which is the attributes 

of a Poisson distribution.  
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B. Service time distribution. The service time 

distribution can be constant, exponential, 

hyperexponential, hypo-exponential or general. The 

service time is independent of the inter-arrival time. 

 

C. Number of servers. The queuing calculations change 

depends on whether there is a single server or 

multiple servers for the queue. A single server queue 

has one server for the queue. This is the situation 

normally found in a grocery store where there is a 

line for each cashier. A multiple server queue 

corresponds to the situation in a bank in which a 

single line waits for the first of several tellers to 

become available. 

 

D. Queue Lengths (optional). The queue in a system can 

be modeled as having infinite or finite queue length. 

 

E. System capacity (optional). The maximum number of 

customers in a system can be from 1 up to infinity. 

This includes the customers waiting in the queue. 

 

F. Queuing discipline (optional). There are several 

possibilities in terms of the sequence of customers to 

be served such as FIFO (First In First Out, i.e. in 

order of arrival), random order, LIFO (Last In First 

Out, i.e. the last one to come will be the first to be 

served), or priorities. Kendall, in 1953, proposed a 

notation system to represent the six characteristics 

discussed above. The notation of a queue is written 

as: 

A/B/P/Q/R/Z 

 

Where, A, B, P, Q, R and Z describe the queuing system 

properties. 

 

 A describes the distribution type of the inter arrival times. 

 B describes the distribution type of the service times. 

 P describes the number of servers in the system. 

 Q (optional) describes the maximum length of the queue. 

 R (optional) describes the size of the system population. 

 Z (optional) describes the queuing discipline. 

 

IV. THE MATHEMATICAL MODEL:M/D/C : 

FCFS/∞/∞ 

 

In the last decade sevral useful approximations has been 

obtained for the average wating time I M/G/C queue , see[4]& 

[8] for further discussions. This is a model with poisons 

arrival, determinstic service with multichannel, first come first 

serve discipline and infinite polpulation. The state probability 

for the continuous M/D/c queue with infinite buffer can be 

obtained [5]. In this model to serve one unit more than one 

server are available, the arrival of one unit is depend on 

markovin process and service time is determinstic. Although 

several approximation for he average queue length in M/D/c 

queue can be fount in [5]. 

 

Here n: the total no. of customer in the system at time t. 

 

          c: Number of server channel ( 1≤c)  

 

Case I: If n ≤ c, In this case no customer have to wait for the 

service, but there is a possibility    that some server 

may be idle. 

Case II: n > c, In this case, at any time t, c customer will be 

serve and (n-c) customers willl be waiting in the 

queue. If λ and μ be the parameter of I/P, O/P and     

μ (= k (say)) is constant service discipline. 

Probability of n arrival in time t = 
e−λt(λt)n

n!
 

𝜆𝑛 =  𝜆0 ,          𝜇𝑛 = 𝜇𝑛     𝑖𝑓 𝑛 = 0 

𝜆𝑛 =  𝑛𝜆 ,          𝜇𝑛 = 𝑛𝜇     𝑖𝑓 𝑛 ≤ 𝑐 

𝜆𝑛 =  𝑛𝜆 ,          𝜇𝑛 = 𝑐𝜇     𝑖𝑓 𝑛 ≥ 𝑐 

First we find 𝑃𝑛(𝑡 + 𝑑𝑡)  for n ≤ c. There are 

following three ways are possible 

 
Table 1 

 

Event No. of units 

at time t 

No. of 

arrivals in 

time dt 

No. of 

service in 

time dt 

No. of units 

at time t + 

dt 

1 n 0 0 n 

2 n-1 1 0 n 

3 n+1 0 1 n 

 
Probability of Event 1 

                                  = 𝑃𝑛(𝑡)(1 − 𝜆𝑛𝑑𝑡)(1 − 𝜇𝑛𝑑𝑡) 

                                  = 𝑃𝑛(𝑡)(1 − 𝑛𝜆𝑑𝑡)(1 − 𝑛𝜇𝑑𝑡) 

          =𝑃𝑛(𝑡)(1 − 𝑛𝜆𝑑𝑡)(1 − 𝑛𝑘𝑑𝑡) 

                                  =𝑃𝑛(𝑡)[1 − (𝑛𝜆 + 𝑛𝑘)𝑑𝑡] 

 

Probability of Event 2  

 

              =  𝑃𝑛−1(𝑡)[(𝜆𝑛−1𝑑𝑡)][(1 − 𝜇𝑛−1𝑑𝑡)] 
              =  𝑃𝑛−1(𝑡)[(𝑛 − 1)𝜆𝑑𝑡][(1 − (𝑛 − 1)𝜇𝑑𝑡)] 

              =  𝑃𝑛−1(𝑡)[(𝑛 − 1)𝜆𝑑𝑡][(1 − (𝑛 − 1)𝑘𝑑𝑡) 

              = 𝑃𝑛−1(𝑡)[(𝑛 − 1)𝜆𝑑𝑡] 

 

Probability of Event 3  

 

           = 𝑃𝑛+1(𝑡)[(1 − 𝜆𝑛+1𝑑𝑡)][(𝜇𝑛+1𝑑𝑡)] 
           =  𝑃𝑛+1(𝑡)[(1 − (𝑛 + 1)𝜆𝑑𝑡)][(𝑛 + 1)𝜇𝑑𝑡)] 
           = 𝑃𝑛+1(𝑡)[(1 − (𝑛 + 1)𝜆𝑑𝑡)][(𝑛 + 1)𝑘𝑑𝑡)]] 
           = 𝑃𝑛+1(𝑡)[(𝑛 + 1)𝑘𝑑𝑡] 

 

Therefore  

𝑃𝑛(𝑡 + 𝑑𝑡) = 𝑃𝑛(𝑡)[1 − (𝜆 + 𝑘)𝑛𝑑𝑡] +  𝑃𝑛−1(𝑡)[(𝑛 − 1)𝜆𝑑𝑡] 

+ 𝑃𝑛+1(𝑡)[(𝑛 + 1)𝑘𝑑𝑡] 
                                                                                                    

                                                       …………………………. (1) 

Set  𝑑𝑡 ⟶ 0 
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𝑑

𝑑𝑡
𝑃𝑛(𝑡) = 𝑃𝑛(𝑡)[−(𝜆 + 𝑘)𝑛]  +  𝑃𝑛−1(𝑡)[(𝑛 − 1)𝜆 ] + 

𝑃𝑛+1(𝑡)[(𝑛 + 1)𝑘] 
 

Similirly Now we find 𝑃𝑛(𝑡 + 𝑑𝑡) for c < n.  

 

Probability of Event 1 

 

                             = 𝑃𝑛(𝑡)[(1 − 𝜆𝑛𝑑𝑡)][(1 − 𝑐𝑘𝑑𝑡)] 
                             = 𝑃𝑛(𝑡)[1 − 𝑛𝜆𝑑𝑡 − 𝑐𝑘𝑑𝑡] 
                             = 𝑃𝑛(𝑡)[1 − (𝑛𝜆 + 𝑐𝑘)𝑑𝑡] 

 

Probability of Event 2  

 

                     = 𝑃𝑛−1(𝑡)[(𝜆𝑛−1𝑑𝑡)][(1 − 𝜇𝑛−1𝑑𝑡)] 
                     =  𝑃𝑛−1(𝑡)[(𝑛 − 1)𝜆𝑑𝑡][(1 − 𝑐𝑘𝑑𝑡)] 

                     =  𝑃𝑛−1(𝑡)[(𝑛 − 1)𝜆𝑑𝑡] 

 

Probability of Event 3  

 

          =  𝑃𝑛+1(𝑡)[(1 − 𝜆𝑛+1𝑑𝑡)][(𝜇𝑛+1𝑑𝑡)] 
         =  𝑃𝑛+1(𝑡)[(1 − (𝑛 + 1)𝜆𝑑𝑡)][(𝑐𝑘𝑑𝑡)] 
         =𝑃𝑛+1(𝑡)[(1 − (𝑛 + 1)𝜆𝑑𝑡)][(𝑛 + 1)𝑘𝑑𝑡)]] 
         = 𝑃𝑛+1(𝑡)[𝑐𝑘𝑑𝑡] 

 

Therefore  

 

𝑃𝑛(𝑡 + 𝑑𝑡) = 𝑃𝑛(𝑡)[1 − (𝑛𝜆 + 𝑐𝑘)𝑑𝑡] +        

                      𝑃𝑛−1(𝑡)[(𝑛 − 1)𝜆𝑑𝑡] + 𝑃𝑛+1(𝑡)[𝑐𝑘𝑑𝑡] 

    

                                             ………………… (2) 

Set 𝑑𝑡 ⟶ 0 
𝑑

𝑑𝑡
𝑃𝑛(𝑡) = 𝑃𝑛(𝑡)[−(𝑛𝜆 + 𝑐𝑘)] +  𝑃𝑛−1(𝑡)[(𝑛 − 1)𝜆] 

                 + 𝑃𝑛+1(𝑡)[𝑐𝑘] 
𝑃0(𝑡 + 𝑑𝑡) =  𝑃0(𝑡)[1 − 𝑐𝑘𝑑𝑡] + 𝑃1(𝑡)[𝑐𝑘𝑑𝑡] 

𝑑𝑡 ⟶ 0 
𝑑

𝑑𝑡
𝑃0(𝑡) = 𝑃0(𝑡)[−𝑐𝑘] + 𝑃1(𝑡)[𝑐𝑘]                                    

                                                        .............................. (3) 

For steady state by equation 1, 2 & 3 

 

𝑃0(𝑡)𝑐𝑘 = 𝑃1(𝑡)𝑐𝑘  

               𝑃0 = 𝑃1  ; 𝑖𝑓  𝑛 =  0   ................ (4.1) 

 

𝑃𝑛(𝜆 + 𝑘)𝑛 =  𝑃𝑛−1(𝑛 − 1)𝜆 + 𝑃𝑛+1(𝑛 + 1)𝑘            

               ;  𝑖𝑓 𝑛 ≤ 𝑐        …...….. (4.2) 

 

𝑃𝑛(𝑛𝜆 + 𝑐𝑘) =   𝑃𝑛−1(𝑛 − 1)𝜆 + 𝑃𝑛+1(𝑡)𝑐𝑘                         

;  𝑖𝑓 𝑐 < 𝑛     } ...…….. (4.3) 

 

On simplification of equation (4) 

𝑃0 = 𝑃1    ; 𝑖𝑓  𝑛 =  0            

                                                   …………………. (5.1) 

           

𝑃𝑛𝜆𝑛 =  𝑃𝑛+1(𝑛 + 1)𝑘  ;  𝑖𝑓 𝑛 ≤ 𝑐     

                                           ………………………. (5.2) 
 

𝑃𝑛𝑛𝜆 =  𝑃𝑛+1𝑐𝑘   ;  𝑖𝑓 𝑐 < 𝑛 

                                           ………………………. (5.3) 

 

To find steady state from equation (5) 

𝑃𝑢𝑡 𝑛 = 1 
𝑃0 = 𝑃1    ; 𝑖𝑓  𝑛 =  0 

1𝜆𝑃1 = 𝑃2(2𝑘)  ;  𝑖𝑓  𝑛 ≤ 𝑐 
1𝜆𝑃1 = 𝑃2(𝑐𝑘)   ;  𝑖𝑓 𝑐 < 𝑛 
 

𝑃𝑢𝑡 𝑛 = 2 
2𝜆𝑃2 = 𝑃3(3𝑘)  ;  𝑖𝑓  𝑛 ≤ 𝑐 
2𝜆𝑃2 = 𝑃3(𝑐𝑘)   ;  𝑖𝑓 𝑐 < 𝑛 

 
𝑃𝑢𝑡 𝑛 = 3 

 3𝜆𝑃3 = 𝑃4(4𝑘)  ;  𝑖𝑓  𝑛 ≤ 𝑐 

3𝜆𝑃3 = 𝑃4(𝑐𝑘)   ;  𝑖𝑓 𝑐 < 𝑛 

 

Continue this process 

……………….. 

…………… 

……. 

 

In general 

𝑃𝑛+1 = 
𝑛

𝑛+1

𝜆

𝜇
𝑃𝑛  ;  𝑖𝑓  𝑛 ≤ 𝑐       

                                                                               .......…….. (6) 

𝑃𝑛+1 = 
𝑛

𝑐

𝜆

𝑘
𝑃𝑛  ;  𝑖𝑓 𝑐 < 𝑛 

                                                                               …………. (7) 

 

 

For n ≤ c 
 

𝑃0 = 𝑃1   ⟹  𝑃1 = 𝑃0 

 

1𝜆𝑃1 = 𝑃2(2𝑘)       ⟹  𝑃2 =
1

2
 

𝜆

𝑘
𝑃0 

 

2𝜆𝑃2 = 𝑃3(3𝑘)            ⟹ 𝑃3 =
1

3
 (

𝜆

𝑘
)

2

𝑃0 

 

   3𝜆𝑃3 = 𝑃4(4𝑘)         ⟹  𝑃4 =
1

4
 (

𝜆

𝑘
)

3

𝑃0 

……………. 

..................... 

  …………. ⟹  𝑃𝑛 =
1

𝑛
 (

𝜆

𝑘
)

𝑛−1

𝑃0                          ....………(8) 

 

For n > 𝑐 

 

𝑃0 = 𝑃1             ⟹  𝑃1 = 𝑃0 

 

  1𝜆𝑃1  =  𝑃2(𝑐𝑘)  ⟹  𝑃2 =
1

𝑐
 

𝜆

𝑘
𝑃0 

 

2𝜆𝑃2  =  𝑃3(𝑐𝑘)  ⟹ 𝑃3 =
1.2

𝑐2  (
𝜆

𝑘
)

2

𝑃0 

 

 3𝜆𝑃3 = 𝑃4(𝑐𝑘) ⟹  𝑃4 =
1.2.3

𝑐3  (
𝜆

𝑘
)

3

𝑃0 
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..................... 

……………. 

      

⟹  𝑃𝑛 =
(𝑛−1)!

𝑐𝑛−1  (
𝜆

𝑘
)

𝑛−1

𝑃0                                   ……......…. (9) 

 

 

As 

∑ 𝑃𝑛

∞

𝑛=0

= 1 ⟹ ∑ 𝑃𝑛

𝑐

𝑛=0

+ ∑ 𝑃𝑛

∞

𝑛=𝑐+1

= 1 

 

⟹ ∑
1

𝑛
 (

𝜆

𝑘
)

𝑛−1

𝑃0

𝑐

𝑛=0

+ ∑
(𝑛 − 1)!

𝑐𝑛−1
 (

𝜆

𝑘
)

𝑛−1

𝑃0

∞

𝑛=𝑐+1

= 1 

 

∴ P0 =
1

∑
1

n
 (

λ

k
)

n−1
P0

c
n=0 +∑

(n−1)!

cn−1  (
λ

k
)

n−1
P0

∞
n=c+1

  

                                                  …………  (10) 

We get the following solution: 

𝑃𝑛 =
1

𝑛
 (

𝜆

𝑘
)

𝑛−1
𝑃0                 𝐹𝑜𝑟 𝑛 ≤ 𝑐           

                     ……….. (11.1) 

𝑃𝑛 =
(𝑛−1)!

𝑐𝑛−1  (
𝜆

𝑘
)

𝑛−1
𝑃0         𝐹𝑜𝑟 𝑛 > 𝑐         

                                   .…........ (11.2) 
 

Where 𝑃0 is given by equation (10). 

 
V. CONCLUSION 

 
In this paper we studied a variation of the probability of 

M/D/c system with deterministic service time, with poissons 

arrival and several service channels. The results explain the 

complex nature of the probability depend up on the number of 

customers. We can determine the probability in both the cases 

wlile the number of customers are less than  equal to or 

greater than the available number of servers. 
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