
Proofs For Data Integrity In Cloud Storage
Kanmani.P

1
, Anusha.S

2

K.S.Rangasamy College Of Technology

Tiruchengode
1
pkanmaniit@gmail.com

K.S.Rangasamy College Of Technology

Tiruchengode
2
sekharanusha967@gmail.com

Abstract— Cloud computing provides the genuine solution

to the rising storage costs of IT Enterprises. Enterprises

and individual users find it difficult to frequently update

their hardware due to increasing costs of data storage and

rapid increase in data rate. Data outsourcing to the cloud

also helps in reducing the maintenance apart from

reduction of storage costs. Cloud storage moves the user’s

data to large data centres that are remotely located, on

which user does not have any control. However, this

unique feature of the cloud poses many new security

challenges which need to be clearly understood and

resolved. One of the important concerns is data integrity

as the data is physically not accessible to the user the cloud

should provide a way for the user to check if the integrity

of his data is maintained or is compromised. In this paper

a scheme is provided to obtain a proof of data integrity in

the cloud which the customer can employ to check the

correctness of his data in the cloud. This proof can be

agreed upon by both the cloud and the customer and can

be incorporated in the Service level agreement (SLA).

Keywords— Cloud computing, integrity, security.

I. INTRODUCTION

Cloud computing provides unlimited infrastructure to store

and execute customer data and program. As customers they do

not need to own the infrastructure, they are merely accessing

or renting; they can forego capital expenditure and consume

resources as a service, paying instead for what they use. Data

outsourcing to cloud storage servers is an increasing trend

among many firms and users due to its economic advantages.

This essentially means that the owner (client) of the data

moves the data to a third party cloud storage server which is

supposed to store the data apparently for a fee and provide it

back to the owner whenever required. As data generation is

far outpacing data storage it proves costly for small firms to

frequently update their hardware whenever additional data is

created. Also maintaining the storages can be a difficult task.

[1] Data outsourcing to the cloud helps such firms by reducing

the costs of storage, maintenance and personnel. Security

concerns arise since both customer data and program are

residing in provider premises. Security is always a major

concern in Open System Architectures. When user uses the

cloud, user probably won't know exactly where your data is

hosted. Data should be stored and processed only in specific

jurisdictions as define by user.[5] Provider should also make a

contractual commitment to obey local privacy requirements

on behalf of their customers.[2]

In this paper a protocol for obtaining a proof of data

possession in the cloud is implemented referred as Proof of

retrievability (POR).This problem tries to obtain and verify a

proof that the data that is stored by a user at a remote data

storage in the cloud is not modified by the archive and thereby

the integrity of the data is assured.. Such verification systems

prevent the cloud storage archives from misrepresenting or

altering the data stored at it without the permission of the data

owner by conducting frequent checks on the storage archives.

Such checks must allow the data owner to verify that the

cloud archive is not cheating the owner. Cheating, in this

context, means that some malicious storage server might

delete some of the data. It must be noted that the storage

server must be reliable. But the data integrity schemes that are

to be developed need to be equally applicable for malicious as

well as unreliable cloud storage servers. Any such proofs of

data possession schemes does not, protect the data from

corruption by the archive. It just allows detection of altering

or deletion of a remotely located file at an unreliable cloud

storage server. Other techniques such as data redundancy

across multiple systems can be maintained to ensure file

robustness. We are often limited by the resources at the cloud

server as well as at the client while developing proofs for data

possession at untrusted cloud storage servers. Accessing the

entire file in the storage server can be expensive due to I/O

costs and transmitting the file across the network to the client

can consume heavy bandwidths. The problem is further

complicated by the fact that the owner of the data may be a

small device, like a PDA or a mobile phone, which have

limited CPU power, battery power and communication

bandwidth. Hence a data integrity proof has to be developed

needs to taking above limitations into consideration. A proof

must be developed without the need for the user to access the

entire file stored at the server. The proof should not consume

heavy bandwidth. Data integrity refers to maintaining stability

of the data stored in distributed platforms. Strict enforcement

of data integrity rules causes the error rates to be lower,

resulting in time saved troubleshooting and tracing erroneous

data and the errors it causes algorithms. Three types of

integrity constraints are an inherent part of the relational data

International Journal of Advanced and Innovative Research (2278-7844) / # 174 / Volume 3 Issue 12

 © 2014 IJAIR. All Rights Reserved 174

model: entity integrity, referential integrity and domain

integrity.

Fig. 1. Schematic views of a proof of retrievability based on inserting random

sentinels in the data file F .

II. RELATED WORK

The simplest Proof of retrievability (POR) scheme is

developed by using the keyed hash function hk (F). In this

scheme the client, pre-computes the cryptographic hash of F

using hk (F) and stores this hash as well as the secret key K

before accessing the data file in the cloud server. The verifier

then releases the secret key K to the cloud archive and asks it

to compute and return the value of hk (F).If both the values are

same then the file integrity is not lost. The verifier can check

for the integrity of the file F for multiple times, by storing

multiple hash values for different keys each one being an

independent proof. Though this scheme is very simple and

easily implementable the main drawback of this scheme is that

it requires high resource costs for implementation. At the

server side, each invocation of the protocol requires the

archive to process the entire file F which can be

computationally burdensome for the archive even for a

lightweight operation like hashing. Furthermore, it requires

that each proof requires the prover to read the entire file F [3].

Ari Juels and Burton S. Kaliski Jr proposed a scheme called

Proof of retrievability for large files using ‖sentinels‖[3]. This

scheme is different from the key-hash approach. This scheme

uses only a single key irrespective of the size of the file or the

number of files whose retrievability it needs to verify. Also

the archive needs to access only a small portion of the file F

unlike in the key-hash scheme which required the archive to

process the entire file F for each protocol verification. This

small portion of the file F is in fact independent of the length

of F. The schematic view of this approach is shown in Figure

1. In this scheme special blocks (called sentinels) are hidden

among other blocks in the data file F. In the setup phase, the

verifier randomly embeds these sentinels among the data

blocks. During the verification phase, to check the integrity of

the data file F, the verifier challenges the prover (cloud

archive) by specifying the positions of a collection of sentinels

and asking the prover to return the associated sentinel values.

If the prover has modified or deleted a substantial portion of F,

then with high probability it will also have suppressed a

number of sentinels. It is therefore unlikely to respond

correctly to the verifier. To make the sentinels

indistinguishable from the data blocks, the whole modified file

is encrypted and stored at the archive. The use of encryption

here renders the sentinels indistinguishable from other file

blocks. This scheme is best suited for storing encrypted files.

As this scheme involves the encryption of the file F using a

secret key it becomes computationally cumbersome especially

when the data to be encrypted is large. Hence, this scheme

proves disadvantages to small users with limited

computational power (PDAs, mobile phones etc.). There will

also be storage overhead at the server, partly due to the newly

inserted sentinels and partly due to the error correcting codes

that are inserted. Also the client needs to store all the sentinels

with it, which may be storage overhead to thin clients (PDAs,

low power devices etc.)

III. PROPOSED WORK

Previously mentioned integrity schemes is likely to detect

when the data stored in the archive is static and also the above

mentioned protocols did not provide good results when

number of queries has been increased. Taking above

limitations into considerations a scheme has been proposed

which supports both public auditability and dynamic data. The

client before storing its data file F at the client should process

it and create suitable metadata which is used in the later stage

of verification the data integrity at the cloud storage. When

checking for data integrity the client queries the cloud storage

for suitable replies based on which it concludes the integrity

of its data stored in the client. It is important to note that our

proof of data integrity protocol just checks the integrity of

data i.e. if the data has been illegally modified or deleted. This

proof can be agreed upon by both the cloud and the customer

and can be incorporated in the Service level agreement (SLA).

A. Setup Phase

Let the verifier V wishes to the store the file F with the

archive. Let this file F consist of n file blocks. The file is pre-

processed and metadata is generated which is appended to the

file. Let each of the n data blocks have m bits in them. The

initial setup phase can be described in the following steps:

B. Generation of Metadata

Let g be a function defined as follows

g (i,j) → {1..m},i ∈ {1..n},j ∈ {1..k} (1)

where k is the number of bits per data block which we wish to

read as metadata. The function g generates for each data block

a set of k bit positions within the m bits that are in the data

block. Hence g(i,j) gives the j
th

 bit in the i
th

 data block. The

value of k is in the choice of the verifier and is a secret known

only to him. Therefore for each data block we get a set of k

bits and in total for all the n blocks we get n∗k bits. Let mi

represent the k bits of metadata for the i
th

 block. The process

as in figure 2 is initiated with the generation of a public key

parameter Pk by the cloud client. Then the client generates a

signature for individual file blocks. The signature is a form of

International Journal of Advanced and Innovative Research (2278-7844) / # 175 / Volume 3 Issue 12

 © 2014 IJAIR. All Rights Reserved 175

metadata which is a combination of public key and file blocks

and are called as codes. Finally the generated metadata is

transmitted to the cloud storage.[4]

Fig. 2 Metadata Generation

C. Encrypting the Metadata

Each of the metadata from the data blocks mi is encrypted

by using a suitable algorithm to give a new modified metadata

Mi. Without loss of generality we show this process by using

a simple XOR operation. Let h be a function which generates

a k bit integer αi for each i. This function is a secret and is

known only to the verifier V.

h: i → αi, αi ∈ {0...2n} (2)

For the metadata (mi) of each data block the number αi is

added to get a new k bit number Mi.

Mi = mi + αi (3)

In this way we get a set of n new metadata bit blocks. The

encryption method can be improvised to provide still stronger

protection for verifier’s data.

D. Appending the Metadata

All the metadata bit blocks that are generated using the

above procedure are to be concatenated together. This

concatenated metadata should be appended to the file F before

storing it at the cloud server. The file F along with the

appended metadata F is archived with the cloud.

E. Verification Phase

Let the verifier V wants to verify the integrity of the file F.

It throws a challenge to the archive and asks it to respond. The

challenge and the response are compared and the verifier

accepts or rejects the integrity proof. Suppose the verifier

wishes to check the integrity of nth block. The verifier

challenges the cloud storage server by specifying the block

number i and a bit number j generated by using the function g

which only the verifier knows. The verifier also specifies the

position at which the metadata corresponding the block i is

appended. This metadata will be a k-bit number. Hence the

cloud storage server is required to send k+1 bits for

verification by the client. The metadata sent by the cloud is

decrypted by using the number αi and the corresponding bit in

this decrypted metadata is compared with the bit that is sent

by the cloud. Any mismatch between the two would mean a

loss of the integrity of the client’s data at the cloud storage.

IV. CONCLUSION

In this paper we have worked to facilitate the client in

getting a proof of integrity of the data which he wishes to

store in the cloud storage servers with bare minimum costs

and efforts. Our scheme was developed to reduce the

computational and storage overhead of the client as well as to

minimize the computational overhead of the cloud storage

server. We also minimized the size of the proof of data

integrity so as to reduce the network bandwidth consumption.

Many of the schemes proposed earlier require the archive to

perform tasks that need a lot of computational power to

generate the proof of data integrity. But in our scheme the

archive just need to fetch and send few bits of data to the

client.

V. REFERENCES

[1] E. Mykletun, M. Narasimha, and G. Tsudik, ―Authentication and integrity

in outsourced databases,‖ Trans. Storage, vol. 2, no. 2, pp. 107–138, 2006.

[2] D. X. Song, D. Wagner, and A. Perrig, ―Practical techniques for searches

on encrypted data,‖ in SP ’00: Proceedings of the 2000 IEEE Symposium on
Security and Privacy. Washington, DC, USA: IEEE Computer Society, 2000,

p. 44.

[3] A. Juels and B. S. Kaliski, Jr., ―Pors: proofs of retrievability for large
files,‖ in CCS ’07: Proceedings of the 14th ACM conference on Computer

and communications security. New York, NY, USA: ACM, 2007, pp. 584–

597
[4]Muralikrishnan Ramane and Bharath Elangovan., ―A Metadata

Verification Scheme for Data Auditing in Cloud Environment: International

Journal on Cloud Computing: Services and Architecture (IJCCSA), Vol.2,
No.4, August 2012

[5]Aderemi A. Atayeroq and Oluwaseyi Feyisetan(2011),‖Security Issues in

Cloud Computing: The Potentials of Homomorphic Encryption‖, Journal of
Emerging Trends in Computing and Information Sciences ,Vol. 2, No.

10,pp.546.

International Journal of Advanced and Innovative Research (2278-7844) / # 176 / Volume 3 Issue 12

 © 2014 IJAIR. All Rights Reserved 176

