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ABSTRACT 

Traveling wave resolution of Korteweg-de Vries 

(K-dV) solitary and numerical estimation of 

analytic solutions have been studied in this paper 

for imaginary concept. Pretend model of traveling 

wave deals with giant waves or series of waves 

created by an undersea earthquake, volcanic 

eruption or landslide. The concept of traveling 

wave is frequently used by mariners and in 

coastal, ocean and naval engineering. We have 

found some exact traveling wave solutions with 

relevant physical parameters using new auxiliary 

equation method introduced by Pang et al. (Appl. 

Math. Mech-Engl. Ed 31(7):929–936, 2010). We 

have solved the imaginary part of exact traveling 

wave equations analytically, and numerical 

results of time-dependent wave solutions have 

been presented graphically. This procedure has a 

potential to be used in more complex system for 

other types of K-dV equations. 

Keywords: Contor; Propagation; Pretend model; 

Soliton; Periodic; Time evolution 

INTRODUCTION 

Traveling wave is a wave in which the 

medium moves in the direction of propagation of 

the wave. In this wave, energy is transported from 

one part of a medium to another. The traveling 

wave carries energy away from its source. It is the 

wave that is not bounded by a given space but can 

propagate freely. In case of this wave, the vibration 

is in the direction of propagation. Karim et al. 

studied numerical estimation of traveling wave 

solution of two-dimensional K-dV equation using a 

new auxiliary equation method [1]. They studied 

the numerical estimation of traveling wave solution 

of K-dV equations for real cases. A tsunami is a 

giant wave (or series of waves) created by an 

undersea earthquake, volcanic eruption or 

landslide. Tsunami waves are totally uncertain. 

These are not like a normal sea waves. Tsunamis 

are often called tidal waves, but this is not an 

accurate description because tides have little effect 

on giant tsunami waves. In this research, we 

defined this sorts of giant waves are the traveling 

wave of imaginary concept. Herman's numerical 

experiment shows that their method has high 

accuracy. A model of an incompressible flow  

 

 

 

through a cylindrical metal pipe and the 

fundamental physical and mathematical facts 

presented in [2] are used to show how a solitary 

velocity wave (solution) can arise in this system; 

Rukavishnikov and Tkachenko are studied [3]. 

Although the resulting asymptotic expression in the 

radial co-ordinate differs considerably from the 

classical expansion in depth for shallow-water 

waves, they are able to derive the K-dV equation. 

They also show how to proceed back from the K-

dV equation to the velocity function and present 

the numerical results obtained for a model problem. 

Smaoui and Al-Jamal studied the boundary control 

problem of the generalized Korteweg-de Vries 

Burger (GKdVB) equation on the interval [0, 

1], [4]. They presented numerical results 

supporting the analytical ones for both the 

controlled and uncontrolled equations using a finite 

element method. Pang et al. studied the method of 

finding the traveling wave solution to K-dV 

equation using a new auxiliary equation 

method [5]. They got a set of traveling wave 

solution for a specific third-order K-dV equation. 

Zaiko studied the presence of a singularity results 

in that the velocity of long wave perturbations in 

the system becomes imaginary, which corresponds 

to the wave propagation in the range of 

nontransparency [6]. Stefano et al. studied that their 

work is to start up a thorough investigation of 

earthquake-related tsunamis in the Mediterranean 

area and a systematic assessment of the associated 

hazards [7]. They begin by focusing on the 

expected tsunami impact on the coasts of Southern 

Italy. Although other source types, such as large 

submarine landslides[8] or volcanic activity [9,10], 

have been invoked to explain large historical and 

pre-historical tsunamis in the Mediterranean, they 

focused on strictly earthquake-generated tsunamis 

because their impact can be systematically 

addressed based on existing knowledge. 

In this research, two-dimensional third-order K-dV 

equations have been studied. Using a new auxiliary 

equation method, we got the 15 sets of travelling 

wave solution of K-dV equation. There are three 

cases to be arises, two of them are real sense and 

the other is imaginary concept. In our study, we 
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solve the imaginary part of exact traveling wave 

equations analytically, and numerical results of 

time-dependent wave solutions have been 

presented graphically. 

The physical configuration of K-dV equation 

In Figure 1, u is the displacement of wave, g is the 

acceleration due to gravity and h0 is depth of the 

channel. 

 

Figure 1.Physical model and co-ordinate system. 

Method of solution 

The remarkable form of Korteweg-de Vries 

nonlinear partial differentiable equation [11] is 

 
which was first introduced by Dutch mathematics 

Diederik Korteweg and Gustav de Vries in 1895, to 

describe long water waves in a channel of depth h0, 

where σ = 1 6 c 0 h 0 2 is a constant for fairly long 

waves, c 0 = g h 0 1 2 , u is displacement of wave 

and g is the acceleration due to gravity. In this 

section, we introduce the method of finding the 

analytic wave solution to nonlinear evolution 

equation due to Pang et al. [5]. First, a given 

nonlinear partial differential equation has the form. 

p u , u t , u x , u tt , u xx , … .... = 0    (1) 

This method mainly consists of four steps: 

Step1: Take the complex solutions of (1) in the 

form 

u x , t = u ξ , ξ = x - vt ,   (2) 

where v is a real constant. Under the transformation 

(2), (1) becomes an ordinary differential equation 

Q u , u ′ , u ′′ , … … = 0 .   (3) 

Step2: Take the solutions of (3) in the more general 

form: 

u ξ = a 0 + ∑ i = 1 m a i G ξ G ′ ξ i + b i G

 ξ G ′ ξ – I    (4) 

where am and bm are not zero at the same time, 

and a0, ai and bi (i = 1, 2, 3,….. ….m) are constants 

to be determined later. The integer m in (4) can be 

determined by balancing the highest order 

nonlinear terms and the highest order linear terms 

of u(ξ) in (3). G = G(ξ) satisfies the second-order 

linear ordinary differential equation 

G ′′ + λ G ′ + μG = 0 ,   (5) 

where λ and μ are constants for the general solution 

of (5) are as follows: 

When λ 2 - 4 μ > 0 , G ξ = c 1 exp - λ + λ 2 -

 4 μ 2 ξ + c 1 exp - λ - λ 2 - 4 μ 2 ξ ; 

When λ 2 - 4 μ = 0 , G ξ = c 1 + c 2 ξ exp - λ 2 ξ ; 

When λ 2 - 4 μ < 0 , G ξ = exp - λ 2 ξ c 1 cos 4 μ -

 λ 2 2 ξ + c 2 sin 4 μ - λ 2 2 ξ 

Note: Let ai = 0, i = 1, 2, ….. …. ….m. Equation 

(4) changes to 

u ξ = a 0 + ∑ i = 1 m b i G ξ G ′ ξ - i . (6) 

The form of (6) has been used in study of Pang et 

al. If we set bi = 0(i = 1, 2 ……m), (4) changes to 

u ξ = a 0 + ∑ i = 1 m a i G ξ G ′ ξ i . (7) 

Step3: Substitute (4) into (3) and collect all terms 

with the same order of G G ′ together. The left-

hand side of (3) is converted into a polynomial 

in G G ′ . Then, let each coefficient of this 

polynomial to be zero to derive a set of over-

determined partial differential equations 

fora0, ai, bi (i = 1, 2, …   …  , m), λ, μ, and v. 

Step4: Solve the algebraic equations obtained in 

Step3 with the aid of a computer algebra system 

(such as Mathematica or Maple) to determine these 

constants. Moreover, the solutions of (5) are well 

known. Then, 

substituting a0, ai, bi (i = 1, 2, …   …  , m),  v and 

the solutions of (5) into (4), we can obtain the exact 

analytical/traveling wave solutions of (1). 

Solution of mathematical problem 

Consider the K-dV equation 

u t + uu x + u xxx = 0   (8) 

describe the evolution of long wave (with large 

length and measurable amplitude) down a canal 

with a rectangular cross section. Here, u represents 

the wave amplitude, and ut represents the vertical 

velocity of the wave at (x, t), ux describes the rate 

of change in amplitude with respect tox and uxxx is 

a dispersion term. This means that if u is the 

amplitude of wave at some point in space, 

then ux is the slope of the wave at the point 

and uxx concavity near the point. The existence of 

solitary waves is due to the balancing effects 

of uux and uxxx in Equation (8). The nonlinear 

termuux in Equation (8) is important because the 

amplitude of the wave depends on its own rate of 

change in space; it also represents steepening. The 

term uxxx implies dispersion of different frequency 

components. 
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Now, we choose the traveling wave transformation 

(2), i.e. u(x, t) = u(ξ),  ξ = x - vt where v = constant. 

Substituting these into (8), integrating it with 

respect to ξ once and letting the integrating 

constant to be zero, we have 

u ξξ + 1 2 u 2 - vu = 0 .   (9) 

According to Step2, we get m = 2. Therefore, we 

can write the solution of (9) in the form 

u ξ = a 0 + ∑ i = 1 2 a i G ξ G ′ ξ i + b i G ξ G ′ ξ i , 

that 

isu ξ = a 0 + a 1 G G ′ + a 2 G G ′ 2 + b 1 G G ′ -

 1 + b 2 G G ′ - 2 ,   (10) 

where a2 and b2 are not zero at the same time. By 

using (5) and from (10), we have 

u ″ ξ = ( λ a 1 + 2 a 2 + λμ b 1 + 2 μ 2 b 2 ) + ( λ 2 

a 1 + 6 λ a 2 + 2 μ a 1 ) ( G G ′ )+ 8 μ a 2 + 3 λμ a 1

 + 4 λ 2 a 2 ( G G ′ ) 2 + ( 2 μ 2 a 1 + 10 λμ a 2 ) ( 

G G ′ ) 3 + 6 μ2 a 2 G G ′ 4 + ( 2 μ b 1 + 6 λμ b 2 +

 λ 2 b 1 ) ( G G ′ ) -

 1 + ( 3 λ b 1 + 4 λ 2 b 2 + 8μ b 2 ) G D ′ -

 2 + ( 2 b 1 + 10 λ b 2 ) ( G G ′ ) -

 3 + 6 b 2 ( G G ′ ) - 4    (11) 

Substituting (10) and (11) into (9) and collecting 

the coefficients 

of G G ′ i = 0 , ± 1 , ± 2 , ± 3, ± 4 and letting it be 

zero without loss of generality, we obtain the 

system: 

λ a 1 + 2 a 2 + λμ b 1 + 2 μ 2 b 2 + 1 2 a 0 2 + a 1 b

 1 + a 2 b 2 - v a 0 = 0   (i) 

λ 2 a 1 + 6 λ a 2 + 2 μ a 1 + a 0 a 1 + a 2 b 1 -

 v a 1 = 0    (ii) 

8 μ a 2 + 3 λμ a 1 + 4 λ 2 a 2 + 1 2 a 1 2 + a 0 a 2 -

 v a 2 = 0    (iii) 

2 μ 2 a 1 + 10 λμ a 2 + a 1 a 2 = 0  

     (iv) 

6 μ 2 a 2 + 1 2 a 2 2 = 0   

     (v) 

2 μ b 1 + 6 λμ b 2 + λ 2 b 1 + a 0 b 1 + a 1 b 2 -

 v b 1 = 0    (vi) 

3 λ b 1 + 4 λ 2 b 2 + 8 μ b 2 + 1 2 b 1 2 + a 0 b 2 -

 v b 2 = 0    (vii) 

2 b 1 + 10 λ b 2 + b 1 b 2 = 0  

     (viii) 

6 b 2 + 1 2 b 22 = 0 .   

     (ix) 

From (ix), we get either b2 = 0 or b2 = -12 and from 

(v) either a2 = 0 or a2 = -12μ
2
. So, there are three 

cases to be arises. For b2 = 0 and a2 = 0 uses the 

system of Equations (i) to (ix), we get trivial 

solutions. 

Trivial solution set is a0 = a1 = a2 = b1 = b2 = 0 and 

the other solution sets are as follows: 

For a2 = -12μ
2
 and b2 = 0, using the system of 

Equations (i) to (ix), we get a set of solution is as 

follows: 

a 0 = 0 , a 1 = - 12 λμ , a 2 = -

 12 μ 2 , b 1 = 0 , b 2 = 0 , v = λ 2 + 8 μ . 

  (A) 

For a2 = 0 and b2 = -12, using the system of 

Equations (i) to (ix), we get a set of solutions are as 

follows: 

a 0 = - 12 μ , a 1 = 0 , a 2 = 0 , b 1 = - 12 λ , b 2 = -

 12 , v = λ 2 - 4 μ   (B) 

a 0 = - 2 λ 2 - 4 μ , a 1 = 0 , a 2 = 0 , b 1 = -

 12 λ , b 2 = - 12 , v = - λ 2 + 4 μ .  (C) 

For a2 = -12μ
2
 and b2 = -12, using the system of 

Equations (i) to (ix), we get a set of solutions are as 

follows: 

a 0 = 8 μ , a 1 = 0 , a 2 = - 12 μ 2 , b 1 = 0 , b 2 = -

 12 , v = 16 μ , λ = 0   (D) 

and 

a 0 = - 24 μ , a 1 = 0 , a 2 = -

 12 μ 2 , b 1 = 0 , b 2 = - 12 , v = - 16 μ , λ = 0 ,(E) 

where λ and μ are arbitrary constants. By using (A 

to E), Equation (10) can be written as: 

Equations (A to E) and (10) imply, respectively, as 

follows: 

u ξ = - 12 λμ G G ′ - 12 μ 2 G G ′ 2 , ξ = x -

 λ 2 + 8 μ t    (F) 

u ξ = - 12 μ - 12 λ G G ′ - 1 - 12 G G ′ - 2 , ξ = x -

 λ 2 - 4 μ t    (G) 

u ξ = - 2 λ 2 - 4 μ - 12 λ G G ′ - 1 - 12 G G ′ -

 2 , ξ = x + λ 2 - 4 μ t   (H) 

u ξ = 8 μ - 12 μ 2 G G ′ 2 - 12 G G ′ - 2 , ξ = x -

 16 μt , λ = 0(I) 

u ξ = - 24 μ - 12 μ 2 G G ′ 2 - 12 G G ′ -

 2 ; ξ = x + 16 μ t , λ = 0 .(J) 

Now, the second-order differential Equation (5) is 

as follows: 

G ′′ + λ G ′ + μG = 0 

when λ 2 - 4 μ > 0 , G ξ = c 1 exp - λ + λ 2 -

 4 μ 2 ξ + c 2 exp - λ - λ 2 - 4 μ 2 ξ ; 

when λ 2 - 4 μ = 0 , G ξ = c 1 + c 2 ξ exp - λ 2 ξ ; 

when λ 2 - 4 μ < 0 , G ξ = exp - λ 2 ξ c 1 cos 4 μ -

 λ 2 2 ξ + c 2 sin 4 μ - λ 2 2 ξ . 

In this paper, we presented the traveling wave 

resolution of K-dV equation only for the imaginary 

case, that is, λ
2
 - 4μ < 0. 

For λ
2
 - 4μ < 0, 

G ξ = exp - λ 2 ξ c 1 cos 4 μ - λ 2 2 ξ + c 2 sin 4 μ -

 λ 2 2 ξ . 

Let P = 4 μ - λ 2 

∴ G ξ = e ‒ λξ 2 c 1 cos Pξ 2 + c 2 sin Pξ 2 

and G ′ ξ = 1 2 e - λξ 2 - λ c 1 cos Pξ 2 -

 λ c 2 sin Pξ 2 - P c 1 sin Pξ 2 + P c 2 cos Pξ 2 

∴ G G ′ = 2 cos Pξ 2 + 2 c 3 sin Pξ 2 - λ cos Pξ 2 -

 λc 3 sin Pξ 2 - P sin Pξ 2 + Pc 3 cos Pξ2 . 

Therefore, Equation (F) becomes 
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u ξ = - 24 λμ [ cos Pξ 2 + c 3 sin Pξ 2 - λ cos Pξ 2 -

 λc 3 sin Pξ 2 - P sin Pξ 2 + Pc 3cos Pξ 2 ] -

 48 μ 2 cos Pξ 2 + c 3 sin Pξ 2 - λ cos Pξ 2 -

 λc 3 sin Pξ 2 - P sin Pξ 2 + Pc3 cos Pξ 2 2 ξ = x -

 λ 2 + 8 μ t , P = 4 μ - λ 2 .   (12) 

Equation (G) implies 

u ξ = - 12 μ - 6 λ [ - λ cos Pξ 2 - λc 3 sin Pξ 2 -

 P sin Pξ 2 + Pc 3 cos Pξ 2 cos Pξ 2 + c3 sin Pξ 2 ] 

- 3 - λ cos Pξ 2 - λc 3 sin Pξ 2 -

 P sin Pξ 2 + Pc 3 cos Pξ 2 cos Pξ 2 + c 3sin Pξ 2 2 

ξ = x - λ 2 - 4 μ t , P = 4 μ - λ 2   (13) 

Equation (H) implies 

u ξ = - 2 λ 2 - 4 μ - 6 λ [ - λ cos Pξ 2 -

 λc 3 sin Pξ 2 -

 P sin Pξ 2 + Pc 3 cos Pξ 2 cos Pξ2 + c 3 sin Pξ 2 ] 

- 3 - λ cos Pξ 2 - λc 3 sin Pξ 2 -

 P sin Pξ 2 + Pc 3 cos Pξ 2 cos Pξ 2 +c 3 sin Pξ 2 2 

ξ = x + λ 2 - 4 μ t , P = 4 μ - λ 2 .  (14) 

Equation (I) implies 

u ξ = 8 μ - 48 μ 2 [ cos Pξ 2 + c 3 sin Pξ 2 -

 P sin Pξ 2 + Pc 3 cos Pξ 2 ] 2 - 3 [ -

 P sinPξ 2 + Pc 3 cos Pξ 2 cos Pξ 2 + c 3 sin Pξ 2 ] 

2 ; ξ = x - 16 μt , λ = 0 , P = 4 μ  (15) 

Equation (J) implies: 

u ξ = - 24 μ - 48 μ 2 [ cos Pξ 2 + c 3 sin Pξ 2 -

 P sin Pξ 2 + Pc 3 cos Pξ 2 ] 2 - 3 [ -

 Psin Pξ 2 + Pc 3 cos Pξ 2 cos Pξ 2 + c 3 sin Pξ 2 ] 

2 ; ξ = x + 16 μt , λ = 0 , P = 4 μ .  (16) 

Results and discussion 

It can be seen that the potential has the form of the 

bore (according to the terminology of [12]), which 

is a standard function of the nonlinear wave theory. 

The u wave function is determined by Equation 

(12) by computing the governing Equation (8). 

Figure 2a shows that the wave moves right 

direction along t as x increases. At x = 10.0, waves 

fall down, and for x = 15.0, waves fall down 

sharply and the other cases as well. But in every 

wave, it maintains at a surface level which depict a 

general phenomena of a long water waves. The 

wave moves right direction along x as tincreases in 

Figure 2b. At a time t = 0.1, waves fall sharply, and 

then, it maintains a steady-state level. In other 

cases, wave behaviors are the same. 

Figure 3 depicts the u wave contour against tand x. 

For a particular wave, it is seen that the amplitude 

of the wave is minimum at the mid-point of that 

wave. In two-dimensional case, u wave contour is 

always the same at the mid-point at timet = 0.2 and 

a position x = 5.0 is -441.33, which is minimum. 

The negative sign indicates that the wave falls 

down below the surface level. For the imaginary 

case, we chose the parameters as λ = 2.0,μ = 5.0 

and c = 10.0 such that λ
2
 - 4μ < 0 (Table 1). 

 
Figure 2. u wave (a) against t for different values 

of x (b) against x for different values of t. 

 

 

 
Figure 3. u wave contour against t and x. 

For the cases below, the numerical estimations are 

based on the Equation (13). Figure 4a depicts the 

time evolution of the solution u(x, t), 

with λ = 2.0, μ = 5.0 and c = 10.0 so that λ
2
 - 4μ < 0 

for the values x = 5.0, x = 10.0, x = 15.0, x = 20.5 

and x = 25.0. In case of x = 5.0, waves fall down 

at t = 0.1 and goes up immediately. Wave decreases 

as increasing values of t to a certain level 

like t = 0.5, and after that, it increases for that 

particular case against t. Numerical representation 

of uwave against x for the different values 

of t like t = 0.1, t = 0.5, t = 0.9, t = 1.3 and t = 1.7 is 

shown in Figure 4b. It gives the shape of wave 

which is exact traveling wave solution of the 

problem (8). For increasing values of t, wave 

moves to the left but every wave maintaining same 

level against xwhich shows the Figure 4b. Here, we 

see that the numerical result is stable and reliable, 

and it keeps almost the same shape as exact 

solution. For a specific wave, it is seen that the 

amplitude is maximum at the mid-point of that 

wave. Figure 5 represents the numerical estimation 

of u wave contour against x and t simultaneously. 

 
Figure 4. u wave (a) against t for different values 

of x (b) against x for different values of t. 
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Figure 5. u wave contour against t and x. 

Figures 6a,b and 7 show the traveling wave 

solution of K-dV equation (14). Figure 6a 

represents the time evolution of u wave 

against t for different values of x. Waves fall down 

at t = 0.1, which close to the surface level just after 

the given values of t for x = 5.0. Wave decreases as 

increasing values of t to a certain level like t = 0.5, 

and after that, it increases against t. For increasing 

values of t, wave moves to the right but every wave 

maintaining same surface level against x which is 

shown in Figure 6b. But Figure 7 depicts 

the u wave contour against t and x. For the 

graphical representation of the equation, we 

consider the parameters λ = 2.0, μ = 5.0 and c = 10.0 

so that λ
2
 - 4μ < 0 but c does not depend on λ and μ. 

It is found that the wave which is periodic 

for x = 5.0, x = 10.0, x = 15.0, x = 20.0 and x = 25.0 

against t, oscillates regularly. Here, the time t is 

defined over the interval [0, 1.2]. At the center of 

the contour the amplitude of the wave is minimum, 

and it increases gradually around the center. 

 
Figure 6. u wave (a) against t for different values 

of x (b) against x for different values of t. 

 
Figure 7. u wave contour against t and x. 

 

Figure 8a shows u wave against t for different 

values of x while the parameters λ = 2.0, μ = 2.5 

andc = 10.0 so that λ
2
 - 4μ < 0. For x = 5.0, water 

waves fall down at t = 0.1 and goes up 

immediately. Wave decreases as increasing values 

of t to a certain level like t = 0.2 and after that it 

increases up to t = 0.2 against x. Waves move in the 

right direction against t as x increases. For a 

particular value of x, amplitude of the wave 

fluctuates randomly against t which is the general 

characteristics of the traveling wave for imaginary 

case. Figure 8b shows the graphical representation 

of traveling wave against x for different values of t. 

In case of t increases wave moves to the right 

direction but every wave maintains same level 

against x which is shown in Figure 8b. It gives the 

same wave shape of the exact traveling wave 

solution for the governing equation (8). For a 

particular wave, amplitude gives a minimum value 

at the middle position. Figure 9 shows that the 

numerical representation of u wave contour 

against t and x which is based on the result (15). In 

two-dimensional case, u wave contour is always 

same at the mid-point for a particular value 

of t = 1.0 and x = 7.6 is -340,685,275.74. The 

negative sign indicates that the wave falls down 

below the surface level. Drastic falls indicate the 

general phenomena of tsunami wave. 

 
Figure 8. u wave (a) against t for different 

values of x (b) against x for different 

values of t. 

 
Figure 9. u wave contour against t and x. 

Now we consider the numerical estimation of (16) 

for an imaginary case where the 

parameters λ = 2.0, μ = 5.0 and c = 10.0 such 

that λ
2
 - 4μ < 0. Figure 10a shows the numerical 

representation of uwave against t for different 

values of x = 5.0, x = 10.0, x = 15.0, x = 20.0 

and x = 25.0. We have seen that wave increases 

against t to a certain time t = 0.3, and later, it 

gradually decreases. While in every case, wave 
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maintains the surface level. In tsunami, it could be 

really impossible which indicate that this is a 

pretend model of K-dV equation. Here, we see 

that u wave is solitary, and it is very much regular 

that we expect in analytical sense. As t increases, 

wave moves to the right but every wave maintains 

same surface level against x which is shown in 

Figure 10b. Figure 11shows that the u wave 

contour against x and t. In two-dimensional 

case, u wave contour is always same at the mid-

point for a particular value of t = 1.0 and x = 3.0 is -

629.68. Other cases have the same analysis. In 

tsunami, the wave moves over large amount of 

obstacle with huge energy. Thus, in tsunami, it is 

quite difficult to predict what happens in the waves. 

 

 
Figure 10. u wave (a) against t for different 

values of x (b) against x for different values of t. 

 
Figure 11. u wave contour against t and x. 

u wave against t for different values of x for 

controlling parameter λ = 2.0, μ = 5.0 and c = 10.0 

such that λ
2
 - 4μ < 0. But c does not depend on other 

two. In this case, wave length analysis is totally 

imaginary concept. At x = 5.0, u wave gradually 

increases up to t = 1.5, and after that, it gradually 

decreases. The maximum value of wave length is -

48.0188 at t = 1.50 and minimum value is -

107.1442 at t = 0.10. For x = 10.0, u wave gradually 

increases as t increase to a certain level t = 0.5, and 

after that, u wave gradually decreases. The 

maximum value of u wave is -48.0394 at t = 0.5 

and minimum is -109.5652 at t = 2.0. The same 

analysis was observed in the other cases (Table 2). 

u wave against x for different values of t for 

controlling parameter λ = 2.0, μ = 5.0 and c = 10.0 

such that λ
2
 - 4μ < 0. Because of the imaginary 

concept, u wave against x for different values of 

behaves abruptly. For a particular value of t = 0.1, 

the maximum wave length is -48.1083 and 

minimum value is -4,176.9329 at x = 40.00 

and x = 25.00, respectively. For t = 0.5, the 

maximum value of u wave is -48.0117 and 

minimum value is -3,028.7656 at x = 65.00 

and x = 25.00, respectively. When t = 0.9, the 

maximum value of u wave is -48.0127 and 

minimum value is -5,405.6342 at x = 90.00 

and x = 50.00, respectively. 

Conclusion 

In this research, numerical estimation of traveling 

wave solution of two-dimensional K-dV equation 

using a new auxiliary equation method has been 

studied. The K-dV equation for the present 

problem comes from the third-order two-

dimensional governing equation (*) after some 

suitable transformation. It is found that there are 

five exact traveling wave solutions (12 to 16) of K-

dV equation exist for pretend model depends on 

different values related physical parameters. 

Numerical results of five analytical solutions for 

imaginary case obtained by using FORTRAN 

program have been shown graphically and 

discussed accordingly. While employing the 

Fortran-Scheme for the numerical estimation of K-

dV equations, we presented those graphically 

when λ
2
 - 4μ < 0. Note that the real life examples of 

imaginary concept may be seen in Tsunami waves. 

Further study is needed to use its potentiality for 

more complex types of K-dV equations. 
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