
Blind Motion Deblurring from a Single Image 

Mr.. Prashant G. Kathe 

Dept.of Electronics and communication Engg. 

S.S.G.B.C.O.E.T. 

Bhusawal,(India).  

prashantkathe@ymail.com  

 

Abstract— Restoring a clear image from a single 

motion-blurred image due to camera shake has long been 

one challenging problem in digital imaging. Existing 

blind deblurring techniques either only can remove 

simple motion blurring, or need user interactions to work 

on more complex cases. In this paper, we present an 

approach to remove motion blurring from a single image 

by formulating the blind blurring as`a new joint 

optimization problem, which simultaneously maximizes 

the sparsity of the blur kernel and the sparsityof the clear 

image under certain suitable redundant tightframe 

systems (curvelet system for kernels and framelet system 

for images). Without requiring any prior information 

ofthe blur kernel as the input, our proposed approach is 

ableto recover high-quality images from given blurred 

images. Furthermore, the new sparsity constraints under 

tightframe systems enable the application of a fast 

algorithm called linearized Bregman iteration to 

efficiently solve the proposed minimization problem. 

The experiments on both simulated images and real 

images showed that our algorithm cans effectively 

removing complex motion blurring from nature images. 

Keywords -- Blind image, psf, motion deblur, Bregman 

eterative method. 

Introduction 

Motion blur caused by camera shake has been one of the 

prime causes of poor image quality in digital imaging, 

especially when using telephoto lens or using long 

shuttle speed. In past, many researchers have been 

working on recovering clear images from motion-blurred 

images. The motion blur caused by camera shake usually 

is modeled by a spatial invariant blurring process: 

f = g ∗p + n …                                 (1) 

Where ∗ is the convolution operator, g is the clear image 

to recover, f is the observed blurred image, p is the blur 

kernel(or point spread function) and n is the noise. If the 

blur kernel is given as a prior, recovering clear image is 

called anon-blind deconvolution problem; otherwise 

called a blind deconvolution problem. It is known that 

the non-blind deconvolution problem is an ill-

conditioned problem for its sensitivity to noise. Blind 

deconvolution is even more illposed .Because both the 

blur kernel and the clear image are unknown; the 

problem becomes under-constrained as there are more 

unknowns than available measurements. Motion 

deblurring is a typical blind deconvolution problem as 

the motion between the camera and the scene can be 

arbitrary. 

1. LITERATURE WORK 

Early works on blind deblurring usually use a single 

image and assume a prior parametric form of the blur 

kernel p such that the blur kernel can be obtained by 

only estimating a few parameters (e.g., Pavlovic and 

Tekalp [1]).linear motion blur kernel model used in 

these works oftenis overly simplified for true motion 

blurring in practice. To solve more complex motion 

blurring, multi-image based approaches have been 

proposed to obtain more information of the blur kernel 

by either actively or passively capturing multiple images 
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on the scene (e.g., Bascle et al. [2], Ben-Ezraand Nayar 

[3], Chen et al. [4], Lu et al. [5], Raskar [6],Tai et al. 

[7]).Recently, there have been steady progresses on 

removing complex motion blurring from a single image. 

There are two typical approaches. One is to use some 

probabilistic priors on images’ edge distribution to 

derive the blur kernel(e.g., Fergus et al. [8], Levin [9], 

Joshi [10]) or manually selecting blurred edges to obtain 

the local blur kernel(Jia [11]). The main weakness of this 

type of methods is that the assumed probabilistic priors 

do not always hold true for general images. The other 

popular approach is to formulate the blind deconvolution 

as a joint minimization problem with some 

regularization on both the blur kernel p and the clear 

image g: 

E (p, q) = min p,g ᵩ (g ∗p − f) + λ11(p) + λ2 2(g), …...(2) 

              Where ᵩ (p∗g−f) is the fidelity term, 1(p) and 

2(g) are the regularization terms on the kernel and the 

clear image 9respectively. In this paper, we focus on the 

regularization based approach. Among existing 

regularization-based methods, TV (Total Variation) 

norm and its variations have been the dominant choice 

of the regularization term to solve various blind 

deblurring problems (e.g., Bar et al. [17], Chan and 

Wong [18], Cho et al. [12]). In these approaches, the 

Fidelity term in (2) is usual ℓ2 norm on image intensity 

similarity; and the regularization terms  1 and  2 in (2) 

are both TV norms of the image g and the kernel p. Shan 

et al. [13] presented a more sophisticated minimization 

model where the fidelity term is a weighted ℓ2 norm on 

the similarity of both image intensity and image 

gradients. The regularization term on the latent image is 

a combination of a weighted TV norm of image and the 

global probabilistic constraint on the edge distribution as 

([8]). The regularization term on the motion-blur kernel 

is the ℓ1 norm of the kernel intensity. These 

minimization methods showed good performance on 

removing many types of blurring. In particular, Shan et 

al.’smethod demonstrated impressive performance on 

removing modest motion blurring from images without 

rich textures. However, solving the resulting 

optimization problem (2) usually requires quite 

sophisticated iterative numerical algorithms, which often 

fail to converge to the true global minimum if the initial 

input of the kernel is not well set. One well-known 

degenerate case is that the kernel converges to a delta-

type function and the recovered image remains blurred. 

Thus, these methods need some prior information on the 

blur kernel as the input, such as the size of the kernel 

(e.g., Fergus et al. [8], Shan et al. [13]). Also, the classic 

optimization techniques (e.g. interior point method)are 

highly inefficient for solving (2) as they usually requires 

the computation of the gradients in each iteration, which 

could be very expensive on both computation amount 

and memory consumption as the number of the 

unknowns could be up to millions (the number of image 

pixels). 

Non Blind image deblurring technique: 

1 Wiener Filter Deblurring Technique  

The Wiener filter isolates lines in a noisy image by 

finding an optimal tradeoff between inverse filtering and 

noise smoothing. It removes the additive noise and 

inverts the blurring simultaneously so as to emphasize 

any lines which are hidden in the image. This filter 

operates in the Fourier domain making the elimination of 

noise easier as the high and low frequencies are removed 

from the noise to leave a sharp image. Using Fourier 

transforms means the noise is easier to completely 

eliminate and the actual line embedded in noise easier to 

isolate making it a slightly more effective method of 
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filtering.Wiener filter is a method of restoring image in 

the 

presence of blur and noise. The frequency-domain 

expression for the Wiener filter is: 

W(s) = H(s)/F+(s), H(s) = Fx,s (s) eas /Fx(s) 

Where: F(s) is blurred image, F+(s) causal, Fx(s) anti-

causal 

 

Deconvolution using Wiener Filter 

Weiner Filtering is also a non blind technique for 

reconstructing the degraded image in the presence of 

known PSF. It removes the additive noise and inverts the 

blurring simultaneously. It not only performs the 

deconvolution by inverse filtering (highpass filtering) 

but also removes the noise with a compression operation 

(lowpass filtering).It compares with an estimation of the 

desired noiseless image. The input to a wiener filter is a 

degraded image corrupted by additive noise. The output 

image is computed by means of afilter using the 

following expression: 

f= g * (f + n) ……….(5) 

In equation (5), f is the original image, n is the noise, f’ 

is the estimated image and g is the Wiener filter’s 

response. 

 

2. Regularized filter deblurring method 

Regulated filter is the deblurring method to deblured an 

Image by using deconvlution function which is 

effectively when the limited information is known about 

additive noise. 

Deconvolution using Regularized Filtering 

Regularized filtering is used effectively when constraints 

like smoothness are applied on the recovered image and 

limited information is known about the additive noise. 

The blurred and noisy image is restored by a constrained 

least square restoration algorithm that uses a regularized 

filter. Regularized restoration provides similar results as 

the wiener filtering but it has a very different viewpoint. 

In regularized filtering less prior information is required 

to apply restoration. The regularization filter is often 

chosen to be a discrete Laplacian. This filter can be 

understood as an approximation of a Wiener filter. 

3. Lucy-Richardson algorithm method 

The Richardson–Lucy algorithm, also known as 

Richardson–Lucy deconvolution, is an iterative 

procedure for recovering a latent image that has been the 

blurred by a known PSF. 

Ci = ∑j Pij uj 

 

Where’ Pij’ is PSF at location i and j, uj is the pixel 

value at 

location j in blurred image .Ci is the observed value at 

pixel location i. Iteration process to calculate uj given 

the observed 

ci and known pij 

uj
(t+1)

=uj
t 
∑i ci/ci pij   

where 

ci=∑j uj
(t)

 pij 

                                                                                                                                                        

Lucy-Richardson Algorithm Technique 

Approach  

In this paper, we propose a new optimization approach 

to remove motion blurring from a single image. The 

contribution of the proposed approach is twofold. First, 

we propose new sparsity-based regularization terms for 

both images and motion kernels using redundant tight 

frame theory. Secondly, the new sparsity regularization 

terms enable the application of a new numerical 

algorithm, namely linearized Bregman iteration, to 

efficiently solve the resulting ℓ1 normrelated 

minimization problem. Most of nature images have 

sparse approximation under some redundant tight frame 

systems, e.g. translation in variant wavelet, Gabor 
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transform, Local cosine transform ([14]), framelets 

([15]) and curvelets ([8]). The sparsity of nature images 

under these tight frames has been successfully used to 

solve many image restoration tasks including image 

denoising, non-blind image deblurring, image in 

painting, etc (e.g. [12, 6, 4]). Therefore, we believe that 

the high sparsity of images under certain suitable tight 

frame system is also a good regularization on the latent 

image in our blind deblurring problem. In this paper, we 

chose framelet system ([15, 13]) as the redundant tight 

frame system used in our approach for representing 

images. The motion-blur kernel is different from typical 

images. It can be viewed as a piece-wise smooth 

function in 2D image domain, but with some important 

geometrical property: the support of the kernel (the 

camera trajectory during exposure) is approximately a 

thin smooth curve. Thus, the best tight frame system for 

representing motion-blur kernel is Curvelet system, 

which is known for its optimal sparse representation for 

this type of functions ([8]).The sparsity-based 

regularization on images or kernels is not a completely 

new idea. Actually, the widely used TV-norm based 

regularization can also be viewed as a sparsity 

regularization on image gradients. However, redundant 

tight frame systems provide much higher sparsity when 

representing nature images, which will increase the 

robustness to the noise. More importantly, as Donoho 

pointed out in[14] that the minimal ℓ1 norm solution is 

the sparsest solution for most large under-determined 

systems of linear equations, using tight frame system for 

representing images/kernels is very attractive because 

the tight frame coefficients of images/kernels are indeed 

heavily redundant. Furthermore, TV-norm or its 

variations are not very accurate regularization terms to 

regularize motion-blur kernels, as they do not impose the 

support of the kernel being an approximately smooth 

curve. However, by representing the blur kernel in the 

curvelet system, the geometrical property of the support 

of motion kernels are appropriately imposed, because a 

sparse solution in curvelet domain tends to be smooth 

curves instead of isolated points. 

Deconvolution using Lucy Richardson Algorithm 

DLR is a non blind technique of image restoration, used 

to restore a degraded image that has been blurred by a 

known PSF. It is an iterative procedure in which the 

pixels of the observed image are represented using the 

PSF and the latent image as follows: 

di = Σ pij uj        …                    (2) 

In equation (2), di is the observed value at pixel 

position,’i’, pij is the PSF, the fraction of light coming 

from true locations’ that is observed at position,’i’, uj is 

the latent image pixel value at location ,’j’ . The main 

objective is to compute the most likely ‘uj’ in the 

presence of observed di and known PSF pij as follows: 

uj
(t+1)

 =uj
(t)

 idi/ci pij   …..     (3) Where, 

ci= j pij uj
(t)

              …….   (4) 

4. Blind deconvolution algorithm method 

Definition of the blind deblurring method can be 

expressed by: 

g(x, y) =PSF * f(x,y) + η(x,y) 

Where: g (x, y) is the observed image, PSF is Point 

Spread Function, f (x,y) is the constructed image and 

η(x,y) is the additive noise term [16]. 

Blind Image Deconvolution 

As the name suggests, BID is a Blind technique of image 

restoration which restores the degraded image that is 

blurred by an unknown PSF. It is a deconvolution 

technique that permits recovery of the target image from 

a single or set of blurred images in the presence of a 

poorly determined or unknown PSF. 
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In this technique firstly, we have to make an estimate of 

the blurring operator i.e. PSF and then using that 

estimate we have to deblur the image. This method can 

be performed Iteratively as well as non-iteratively. In 

iterative approach, each iteration improves the 

estimation of the PSF and by using that estimated PSF 

we can improve the resultant image repeatedly by 

bringing it closer to the original image. In non-iterative 

approach one application of the algorithm based on 

exterior information extracts the PSF and this extracted 

PSF is used to restore the original image from the 

degraded one. 

 

Implementation platform  

Technical Requirement: 

Software Requirements: 

 

Front End:  Matlab. 

Operating system: WINDOWS-XP. 

 

Hardware Requirements: 

Main processor         :  Pentium IV 

processor 1.13 GHz. 

Internal memory capacity: 128 MB 

Hard disk capacity   : 40GB. 

Cache memory         : 512 MB. 

Why MATLAB? 

 

MATLAB provides a comprehensive set of reference-

standard algorithms and graphical tools for image 

processing, analysis, visualization, and algorithm 

development. You can restore noisy or degraded images, 

enhance images for improved intelligibility, extract 

features, analyze shapes and textures, and register two 

images. Most toolbox functions are written in the open 

MATLAB language, giving you the ability to inspect the 

algorithms, modify the source code, and create your own 

custom functions. MATLAB provides a number of 

features for documenting and sharing your work. You 

can integrate your MATLAB code with other languages 

and applications, and distribute your MATLAB 

algorithms and applications. 

Methodology / Algorithm 

Blind deblurring is an under constrained problem with 

many possible solutions. Extra constraints on both the 

image and the kernel are needed to overcome the 

ambiguity and the noise sensitivity. In this paper, we 

present a new formulation to solve (1) with sparsity 

constraints on the image and the blur kernel under 

suitable tight frame systems. We propose to use framelet 

system (Ron and Shen et al.[15]) to find the sparse 

approximation to the image under framelet domain The 

blur kernel is a very special function with its support 

being an approximate smooth 2D curve. We use the 

curvelet system (Candes and Donoho [8]) to find the 

sparse approximation to the blur kernel under curvelet 

domain. 

Algorithm 1 Outline of the alternative iterations 

For k=0,1…. 

 

1) Given the blur kernel p
(k)

,compute the clear 

image g
(k+1)

,i.e. 

 
     g

(k+1) 
  = arg g min 1/2 ǁp

(k) 
* g – f ǁ2 

2
 + λ1 θ1(g)…     

(10) 

 

Where θ1(g) is the regularisation term on images and λ1  

the regularisation parameter. 

2) Given the clear image ,compute the blur kernel 

i.e. 
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      P
(k+1)

 = arg g min 1/2 ǁg
(k+1)

*p – f ǁ2 
2
 + λ2 θ2(p)…     

(11) 

Where θ2(p) is the regularisation term on kernals and λ2  

the regularization parameter.  

There are two steps in Algorithm 1, and both steps are 

about using regularization-based approach for nonblind 

deconvolution. Step 1 is a nonblind image deblurring 

problem, which has been extensively studied in the 

literature .However, there are subtle differences between 

step 1 and the classic nonblind deconvolution problems, 

i.e., the intermediate estimated blur kernel used for 

deblurring instep 1 is not perfect and it is far way from 

the truth during the initial iterations. Inspired by the 

strong noise robustness of the recent nonblind deblurring 

technique [1], we also use the analysis sparsity prior on 

the original image under the framelet system to 

regularize the nonblind image deblurring to alleviate the 

distortion caused by the erroneous intermediate estimate 

of the blur kernel. 

Numerical Algorithms 

This is devoted to the detailed numerical algorithm of 

our blind motion deblurring algorithm outlined in 

Algorithm1. Both steps in Algorithm 1 are solving the 

same type of large-scale minimization problems. The 

difficulties lie in then on separable L1-norm terms Wg1 

and Wp1. One efficient solver for minimizations 

involving such terms is the split Bregman iteration 

which will be used in our solver. The split Bregman 

iteration is based on the Bregman iteration.The Bregman 

iteration was first introduced for nondifferentiable TV 

energy and was then successfully applied to wavelet-

based denoising. The Bregman iteration was also used in 

TV-based blind deconvolution. To further improve the 

performance of the Bregman iteration, a linearized 

Bregman iteration was invented. More details and an 

improvement called “kicking” of the linearized Bregman 

iteration are described, and a for frame-based image 

deblurring was proposed. Recently, a new type of 

iteration based on the Bregman distance, called split 

Bregman iteration, was introduced in [2], which 

extended the utility of the Bregman iteration and the 

linearized Bregman iteration to more general -norm 

minimization problems. The split Bregman iteration for 

frame-based image deblurring wasfirst proposed. The 

basic idea of split Bregman iterationis to convert the 

unconstrained minimization problem (10) and (12) [(12) 

and (13), respectively] into a constrained one by 

introducing an auxiliary variable (respectively) and then 

invoke the Bregman iteration to solve the constrained 

minimization problem. Numerical simulations in show 

that it converges fast and only uses a small memory 

footprint, which make it very attractive for large-scale 

problems. 

Algorithm 2:Numerical algorithm for blind motion 

deblurng 

1) Set k = 0,p(0)= δ,  d1=b1=0 and d2=b2=0 , 

where is a δ delta function. 

2)  Do 

    g
(k+1/2)

 = arg g min 1/2 ǁ [p
(k)

]
 
*g – f ǁ2 

2
 +  λ1 

μ1/2        ǁwg
 
–d1

(k)
+b1

(k)
 ǁ2 

2
                                                                                             

                                1                     Ifg
(k+1/2)

(j)>1; 

                  g
(k+1)

(j)  =    {         0                     

Ifg
(k+1/2)

(j)<0; 

                                g
(k+1/2)

(j)                   otherwise 

  j=1,2,..N  

                               d1
(k+1) 

 =T1/ μ1   (wg
(k+1)

+b1
(k)

) 

                                                b1
(k+1) 

 =b1
(k)

  + (wg
(k+1)

 - 
 
d1

(k+1)
) 
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                               p
(k+1/2)

 = arg g min 1/2 ǁ [g
(k+1)

]
 
*p – f 

ǁ2 
2
 +  λ2T/2 ǁpǁ2 

2
 

+ λ2 μ2/2 ǁwp
 
–d2

(k)
+b2

(k)
ǁ2 

2
     

P
(k+1)

(j)=max(p(k+1/2)(j),0) , j=0,1,2,….N 

P(k+1)=p(k+1)/ ǁp(k+1)ǁ 1  

d2
 (k+1) 

 =T1/ μ2   (wp
 (k+1)

+b2
 (k)

) 

b2
(k+1) 

 =b2 
(k)

  + (wp
(k+1)

 – 
 
d2

(k+1)
) 

K=k+1 

Until(k>=k or ǁp
(k)

-p
(k-1)

ǁ
2
2   <=ε) 

Expected Outcomes 

Image Restoration is a field of Image Processing which 

deals with recovering an original and sharp image from a 

degraded image using a mathematical degradation and 

restoration model. This study focuses on restoration of 

degraded images which have been blurred by known or 

unknown degradation function. On the basis of 

knowledge of degradation function image restoration 

techniques can be divided into two categories: blind and 

non-blind techniques. Three different image formats 

viz..jpg(Joint Photographic Experts Group), 

.png(Portable Network Graphics) and .tif(Tag Index 

Format) are considered for analyzing the various image 

restoration techniques like Deconvolution using Lucy 

Richardson Algorithm (DLR), Deconvolution using 

Weiner Filter (DWF), Deconvolution using Regularized 

Filter (DRF) and Blind Image Deconvolution Algorithm 

(BID).The analysis is done on the basis of various 

performance metrics like PSNR(Peak Signal to Noise 

Ratio), MSE(Mean Square Error) , RMSE( Root Mean 

Square Error).  

 Conclusion: 

In this work, a new algorithm is presented to remove 

camera shake from a single image. Based on the high 

sparsity of the image in framelet system and the high 

sparsity of the motion-blur kernel in curvelet system, our 

new formulation on motion deblurring leads to a 

powerful algorithm which can recover a clear image 

from the image blurred by complex motion. 

Furthermore, the curvelet-based representation of the 

blur kernel also provides a good constraint on the curve-

like geometrical support of the motion blur kernel, thus 

our method will not converge to the degenerate case as 

many other approaches might do. As a result, our 

method does not require any prior information on the 

kernel while existing techniques usually needs user 

interactions to have some accurate information of the 

blurring as the input. Moreover, a fast numerical scheme 

is presented to solve the resulted minimization problem 

with convergence analysis. The experiments on both 

synthesized and real images show that our proposed 

algorithm is very efficient and also effective on 

removing complicated blurring from nature images of 

complex structures. In future, we would like to extend 

this sparse approximation framework to remove local 

motion blurring from the image caused by fast moving 

objects. 
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