
Faster SDRAM Controller with Inbuilt Memory Using

AHB Interface

S. Gopala Krishna
#
 M. Nagarani

$

#$
Electronics and Communication Department

#$
Vivekananda Institute of Technology and Science, Karimnagar, AP, INDIA

Abstract- Microprocessor performance has

improved rapidly these years. In contrast, memory

latencies have improved little. The result is that the

memory access time and its associated speed has been a

bottleneck which limits the system performance. A high

performance memory controller (MC) which is SDRAM

controller is designed to attack this problem. The memory

controller is the part of the system that controls the

memory. The memory controller is normally integrated

into the system chipset. A high performance bus slave

interface is used which is compatible with that of the low

speed SDRAM memory. The SDRAM controller designed

controls all the operations associated with the SDRAM

from and to the memory. Using the FIFOing and

pingpong technique the performance of the SDRAM

controller is increased. In this paper decreased delay

produced when comparing the SDRAM controller without

FIFOing and with FIFOing. Hence latency is been

reduced by 92% with the proposed SDRAM controller.

Keywords- SDRAM, AHB Interface, FIFOing, pingpong

I. Introduction

 The memory controller is designed which

compatible with Advanced High-performance Bus (AHB)

which is a new generation of AMBA bus. The AHB is for

high-performance, high clock frequency system modules.

The AHB acts as the high-performance system backbone

bus. AHB supports the efficient connection of processors,

on-chip memories and off-chip external memory interfaces

with low-power peripherals.

The design two way cable networked SoC, that is SDRAM

controller connected by AMBA (Advanced Microcontroller

Bus Architecture).The AMBA AHB is for high-

performance, high clock frequency system modules. The

AHB acts as the high-performance system backbone bus.

AHB supports the efficient connection of processors, on-

chip memories and off-chip external memory interfaces

with low-power peripherals.

 It has their own bandwidth requirements and

responding speed requirements for SDRAM. By analyzing

the multiple accesses from the modules and the SDRAM

specifications such as its accessing delay, we take both side

1 and side 2 into consideration respectively. On side 1, we

use bank closing control. On side 2, the controller employs

two data write FIFO to reduce the data access awaiting

time, and uses 2 read FIFO to decrease the CAS delay time

when reading data from SDRAM.

 Due to the complexity of implementing the

interleaving technique, we haven’t introduced that

technique to our design yet. However our design is proved

to be functionally correct and high-performance. A

SDRAM must be initialized before starting to access it. The

configurable timing analysis scheme considers that the

timing process might have tiny differences between

different SDRAMs from different corporations

II. Related Work
 On-chip bus organized is among the top challenges

in SoC technology due to rapidly increasing operation

frequencies and growing chip size. Usually, IP cores, as

constituents of SoCs, are designed with many different

interfaces and communication protocols. Integrating such

cores in a SoC often requires insertion of suboptimal glue

logic. Standards of on-chip bus structures were developed

to avoid this problem. Currently there are a few publicly

available bus architectures from leading manufacturers,

such as Core Connect from IBM, AMBA from ARM,

Silicon Backplane from Sonics, and others. This paper

focuses on SoC providing a survey of three popular buses

called AMBA, Core Connect and Wishbone from an

industrial and research viewpoint.

2.1 Advanced High-performance Bus (AHB)

 AHB is a new generation of AMBA bus which is

intended to address the requirements of high-performance

synthesizable designs. It is a high-performance system bus

that supports multiple bus masters and provides high-

bandwidth operation. AHB is for high clock frequency

system modules. It acts as the high-performance system

backbone bus. AHB supports the efficient connection of

processors, on-chip memories and off-chip external

memory interfaces with low-power peripherals.

 AMBA AHB implements the features required for

high-performance, high clock frequency systems including:

which are burst transfers, Pipelined operation, multiple bus

masters, split transactions, wider data bus configurations

(64/128 bits)

International Journal of Advanced and Innovative Research (2278-7844) / # 512 / Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 512

 Bridging between this higher level of bus and the

current ASB/APB can be done efficiently to ensure that any

existing designs can be easily integrated. An AMBA AHB

design may contain one or more bus masters, typically a

system would contain at least the processor and test

interface. However, it would also be common for a Direct

Memory Access (DMA) or Digital Signal Processor (DSP)

to be included as bus masters.

 The external memory interface, APB Bridge and

any internal memory are the most common AHB slaves.

Any other peripheral in the system could also be included

as an AHB slave. However, low-bandwidth peripherals

typically reside on the APB. A typical AMBA AHB system

design contains the following components. A bus master

which is able to initiate read and write operations by

providing an address and control information. Only one bus

master is allowed to actively use the bus at any one time.

 Even though the arbitration protocol is fixed, any

arbitration algorithm, such as highest priority or fair access

can be implemented depending on the application

requirements and the AHB decoder is used to decode the

address of each transfer and provide a select signal for the

slave that is involved in the transfer.

 AHB signal prefixes: H indicates an AHB signal.

For example, HREADY is the signal used to indicate that

the data portion of an AHB transfer can complete. It is

active HIGH.

2.2 Advanced System Bus (ASB)
 An AMBA-ASB based microcontroller typically

consists of a high-performance system backbone bus, able

to sustain the external memory bandwidth, on which the

CPU and other Direct Memory Access (DMA) devices

reside, plus a bridge to a narrower APB bus on which the

lower bandwidth peripheral devices are located. ASB signal

prefixes B is an ASB signal for example, BnRES is the

ASB reset signal. It is active LOW.

 The ASB is a high-performance pipelined bus,

which supports multiple bus masters. The basic flow of the

bus operation is that the arbiter determines which master is

granted access to the bus. When granted, a master initiates

transfers on the bus.

 The decoder uses the high order address lines to

select a bus slave. The slave provides a transfer response

back to the bus master and data is transferred between the

master and slave.

 2.3 Advanced Peripheral Bus (APB)

 The AMBA ArPB should be used to interface to

any peripherals which are low bandwidth and do not require

the high performance of a pipelined bus interface. The latest

revision of the APB ensures that all signal transitions are

only related to the rising edge of the clock. The changes to

the APB also make it simpler to interface it to the new

Advanced High-performance Bus (AHB).

III. AHB COMPLIANT SDRAM

CONTROLLER
 We used FIFO to store the Read/Write commands

coming from processors/user side along with corresponding

write data and included a search engine to search recently

read/write data inside the FIFO in order reduce the clock

cycles of fetching data from SDRAM.

Figure:.3.1 System Module

 Synchronous dynamic random access

memory (SDRAM) is dynamic random access

memory (DRAM) that is synchronized with the system bus.

Classic DRAM has an asynchronous interface, which

means that it responds as quickly as possible to changes in

control inputs. SDRAM has a synchronous interface,

meaning that it waits for a clock signal before responding to

control inputs and is therefore synchronized with the

computer's system bus enabling higher speed. The SDRAM

controller is capable of either 16-bit or 32-bit data path, and

supports byte, half-word and word access. Bursts can be

used for both write and read access.

Figure:.3.2 SDRAM Array structure

 In DRAM devices, large numbers of DRAM cells

are grouped together to form DRAM array structures.

Above figure illustrates a single bank of DRAM storage

cells where a row address is sent to the row decoder, and

the row decoder selects one row of cells.

 A row of cells is formed from one or more word

lines that are driven concurrently to activate one cell on

each one of thousands of bit lines. There may be hundreds

of cells connected to the same bit line, but only one cell will

place its stored charge from its storage capacitor on the bit

line at any one time. The resulting voltage on the bit line is

then resolved into a digital value by a sense amplifier.

International Journal of Advanced and Innovative Research (2278-7844) / # 513 / Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 513

http://en.wikipedia.org/wiki/Dynamic_random_access_memory
http://en.wikipedia.org/wiki/Dynamic_random_access_memory
http://en.wikipedia.org/wiki/System_bus
http://en.wikipedia.org/wiki/Clock_signal

3.1 Functional Description of SDRAM

 The SDRAM achieve high-speed operation. A

single read or write access for the SDRAM effectively

consists of a single n-bit-wide, one-clock cycle data transfer

at the internal DRAM core and one corresponding n-bit-

wide, one- clock-cycle data transfers at the I/O pins.

A bidirectional data strobe (DQS) is transmitted externally,

along with data, for use in data capture at the receiver. DQS

is a strobe transmitted by the SDRAM during READs and

by the memory controller during WRITEs.

DQS is edge-aligned with data for READs and center-

aligned with data for WRITEs. The SDRAM operates from

a different clock (CK and CKE); the crossing of CK going

HIGH and CKE going LOW will be referred to as the

positive edge of CK. Commands (address and control

signals) are registered at every positive edge of CK. Input

data is registered on both edges of DQS, and output data is

referenced to both edges of DQS, as well as to both edges

of CK. Read and write accesses to the SDRAM are burst

oriented; accesses start at a selected location and continue

for a programmed number of locations in a programmed

sequence. Accesses begin with the ACTIVE command,

which may then be followed by a READ or WRITE

command. The address bits issued coincident with the

ACTIVE command are used to select row to be accessed.

The address bits registered coincident with the READ or

WRITE command are used to start the column location for

the burst access. The SDRAM provides for programmable

READ or WRITE burst lengths of 2, 4, or 8 locations. As

with standard SDRAMs, the pipelined architecture of

SDRAMs allows for concurrent operation, thereby

providing high effective bandwidth by hiding row recharge

and activation time.

 Figure: 3.1 Simplified SDRAM Diagram

 Row addresses are present on address pads and are

internally validated by the RAS (Row Address Access)

clock. A bar on top of the signal name means this signal is

active when it is at a low level. The X addresses select one

row through the row decode, while all the other non-

selected rows remain at 0V.

 Column addresses are present on the address pads

and are internally validated by the Column Address Access

(CAS) clock. Each selected memory cell has its data

validated in a sense amplifier. In modern DRAM devices,

the capacitance of a storage capacitor is far smaller than the

capacitance of the bit line. Typically, the capacitance of a

storage capacitor is one-tenth of the capacitance of the long

bit line that is connected to hundreds of other cells [2].

 The relative capacitance values create the scenario

that when the small charge contained in a cell is placed on

the bit line, the resulting voltage on the bit line is small and

difficult to measure in an absolute sense. In DRAM

devices, the voltage sensing problem is resolved through

the use of a differential sense amplifier that compares the

voltage of the bit line to a reference voltage.

Operation of SDRAM controller

 Only one open row in an active bank can be

accessed. An ACTIVE command can open a row and make

active the particular row in the memory. A PRECHARGE

command issued to memory can set the SDRAM to idle

state, i.e. closing the open row in this memory. If every

time after accessing a row AUTOPRECHARGE command

is performed, and the next access is actually involving the

same row of the same bank, an ACTIVE command needs to

be applied again in order to access last open row.

 As it is known that time needed between ACTIVE

and READ/WRITE commands has to be fulfilled. In a

successive period of time a program probably only accesses

a small part of continuous address space. So that it is not

necessary to issue an AUTO-PRECHARGE command after

every read/write access without judging if there’s any need.

If the current access is for an open row in an active bank,

the READ or WRITE command is directly issued to the

SDRAM, the ACTIVE and READ or WRITE commands.

 When the auto-refresh is required, all the active

banks will be inactivated by applying PRECHARGE ALL

command as auto-refresh can only be issued when the

whole SDRAM is in idle state. In this way, the overhead

caused by frequently opening and closing the SDRAM

banks can be decreased. The figure below is the whole

architecture for our SDRAM controller which has the data

path relating to read and write FIFO, AMBA interface and

SDRAM.

 The memory controller basically consist of three

main sub parts, they are

A. 2 Read and 2 write FIFOs

B. Command generator

C. Command scheduler

International Journal of Advanced and Innovative Research (2278-7844) / # 514 / Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 514

Figure: 3.1 Architecture of SDRAM controllers

3.2 Read FIFO
 An AHB (Advanced High-performance Bus)

transfer consists of two distinct sections, the address phase

and the data phase. The address phase lasts only a single

cycle. The address and some control signals are transferred

from a master to a slave during this phase. During the data

phase, data and responding signals are delivered. If a slave

can’t finish the data phase in one cycle, it can use

HREADY to make the master hold the address and control

signals. During the data phase, slave will send the

corresponding response signals to the master to notify if the

transfer is successfully finished or if it needs to retry the

transfer.

 It is known that, SDRAM cannot finish the data

access in a single cycle. So we need some strategies to

decrease the responding time. We analyzed our application

and found that if the SDRAM is accessed in the single

mode, the needing data is available at least after 2 cycles

Plus time consumed by the latching in the bus interface part

and the PRECHARGE command, in fact, it is more than 2

cycles. To support the fast response time, burst mode access

and read FIFOing techniques need to be used whenever

possible.

 When AHB bus needs to read data, see if data is

already in read FIFO by only checking if the current

accessing address is in the range of either of the read FIFO

and if the corresponding bit in the corresponding Valid

Vector is valid. The Valid Vector is used to mark if the data

stored in data FIFO is valid. Valid Vector works like tags

for a cache. Every read FIFO is only as big as the capacity

of a SDRAM burst, so that Valid Vector is only a several

bit vector. If the needed data is in read FIFO, data can be

directly read from them, otherwise, a READ command is

needed issuing to SDRAM.

 After a preset number of clock cycles, the data is

available on the output latches of the SDRAM for reading,

and data is delivered to AHB bus and written to one of the

read FIFO at the same time. The whole burst access data

will be loaded in read FIFO.

 In this way, we implemented perfecting. According

to the local principles of programs, the next read access is

possibly a successive address to the current one. So the next

data can be read from read FIFO, which can fasten the

responding speed. In order to reduce the complexity of

implementing read FIFO, data from SDRAM are stored in

read FIFO 0 and read FIFO1 in turn.

3.3 Writing or ping-ponging

 As it is described about the AHB, in order to reduce

the responding time to write access, write FIFO are used to

pack and align the data when the AHB bus data transfer

size does not match the SDRAM data bus width. Based on

our previous research on FPGA designs, we didn’t use only

one write FIFO, instead, we use 2 FIFO. It is well known

that ping-ponging can reduce or eliminate the mismatch

effects between 2 different modules which are operating at

different speeds.

 By utilizing ping-ponging between the two write

FIFO, part of the time writing one FIFO and part of the

time moving data from another FIFO to off chip SDRAM

can be overlapped.

Figure: 3.2 FIFO state machines

 If write FIFO 0 is not empty and write FIFO 1 is

being written by AHB bus, move FIFO 0’s data to SDRAM

and this FIFO will be in the progress of moving until all

data is moved to SDRAM, vice versa. This is the ping-

ponging technique we used between write FIFO 0 and write

FIFO 1 [1].

The flow of moving data from FIFO to SDRAM is as

follows

 If write FIFO 0 is empty, data will be written to

write FIFO 0. Else if write FIFO 1 is in the progress of

AHB writing and write If write FIFO 0 is being written by

AHB bus and write FIFO 1 is not empty, move FIFO 1’s

data to SDRAM and if FIFO 0 is not empty, move FIFO 0’s

data to SDRAM.

International Journal of Advanced and Innovative Research (2278-7844) / # 515 / Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 515

 This flow explains how the ping-ponging can make

the time writing FIFO and writing SDRAM overlap. The

description of operations about AHB bus writing FIFO is as

follows:

 If write FIFO 0 is empty, data will be written to

write FIFO 0. Else if write FIFO 0 is not empty or in the

progress of moving its data to RAM and if write FIFO 1 is

empty, data will be written to write FIFO 1. Else make the

AHB bus hold the bus signals until one of the FIFO is

empty.

Figure:3.3 Single Data flow to and from the FIFOs

3.4 Read Update Logic

 One of the novel features of this controller is the

internal search which is carries out before giving the

request to the DRAM. When the controller encounters a

read command at the head of the FIFO queue, it takes this

command and searches the FIFO to see if the required data

is already in the FIFO.

 This search is carried out in parallel and all the

FIFO locations are searched in one clock cycle. Hence the

searching time is not dependent on the depth of the FIFO

but at the cost of hardware overhead. The flag bit (executed

/ not executed) aids in the search.

IV. IV SIMULATION RESULTS

AND SYNTHESIS REPORT

Figure: 4.1 SDRAM Memory

Figure: 4.2 Un modified SDRAM Controller

Figure: 4.3 Modified SDRAM Controller

Figure: 4.4 SDRAM RTL schematic

International Journal of Advanced and Innovative Research (2278-7844) / # 516 / Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 516

Figure: 4.4 SDRAM RTL schematic

Testing results between our controller and the

traditional controller, the speedup rate difference is

2.1ns. Moreover, for the two SDRAM controllers, we

compared the times of issuing READ and WRITE

commands to off chip SDRAM while running the

application program. It is shown in Table 17, running

the same application program, modified SDRAM

controller can reduce the times of accessing off chip

SDRAM, which has a heuristic meaning for low

power designs as well.

 The results in table 1 are normalized according

to those from the SDRAM controller described in this

paper. The frequency of the whole SoC got from ISE

is 92 MHZ for the existing SDRAM controller and

114MHZ for the modified SDRAM controller we

described in this paper. We can see that our SDRAM

controller has made a significant decrease of the total

execution time of the application program.

Table: 1

Parameters Existing

SDRAM

Modified

SDRAM

Minimum period 10.832ns 8.743ns

Maximum

Frequency

92.319MHz 114.383MHz

Minimum input

arrival time before

clock

9.902ns 6.914ns

Maximum output

required time after

clock

12.479ns 10.075ns

Maximum

combinational path

delay

11.460ns No path found

Conclusion
 An AHB interfaced high-performance SDRAM

Controller has been proposed, verified and evaluated we

find this SDRAM controller has high performance by

taking good use of the features of SDRAM architecture and

utilizing the well-known techniques such as data FIFOing

and ping-ponging and burst-mode-data transfer. In this

paper testing results shows 91.66% of reduced delay with

FIFOing when compared to the latency produced with

FIFOing, which is nothing but in-built memory used within

the SDRAM controller to improve its performance.

References

[1] Mohd Wajid, Shahank SB, ”Architecture for Faster

RAM Controller Design with Inbuilt Memory”, IEEE ,2010

[2] Ching- SDRAM Controller Applications” .IEEE J.

Solid-State Circuits, Vol..39, Nov. 2004. Che Chung, Pao-

Lung Chen, and Chen-Yi Lee.

[3] Micron Technology Inc., Synchronous DRAM Data

Sheet, 2001.

[4] ARM, AMBA Specification Rev.2.0, 1999.

[5] “Memory Controllers for Real-Time Embedded

systems” Benny Akesson Kees Goossens vol. 3, no. 3, pp.

75–77, Mar1999.

[6] Hynix Semiconductor Inc., SDRAM Device

operationRev.1.1, Sep. 2003.

International Journal of Advanced and Innovative Research (2278-7844) / # 517 / Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 517

