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Abstract- Microprocessor performance has 

improved rapidly these years. In contrast, memory 

latencies have improved little. The result is that the 

memory access time and its associated speed has been a 

bottleneck which limits the system performance. A high 

performance memory controller (MC) which is SDRAM 

controller is designed to attack this problem. The memory 

controller is the part of the system that controls the 

memory. The memory controller is normally integrated 

into the system chipset. A high performance bus slave 

interface is used which is compatible with that of the low 

speed SDRAM memory. The SDRAM controller designed 

controls all the operations associated with the SDRAM 

from and to the memory. Using the FIFOing and 

pingpong technique the performance of the SDRAM 

controller is increased.  In this paper decreased delay 

produced when comparing the SDRAM controller without 

FIFOing and with FIFOing. Hence latency is been 

reduced by 92% with the proposed SDRAM controller. 
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I. Introduction  
  

 The memory controller is designed which 

compatible with Advanced High-performance Bus (AHB) 

which is a new generation of AMBA bus. The AHB is for 

high-performance, high clock frequency system modules. 

The AHB acts as the high-performance system backbone 

bus. AHB supports the efficient connection of processors, 

on-chip memories and off-chip external memory interfaces 

with low-power peripherals.  

The design two way cable networked SoC, that is SDRAM 

controller connected by AMBA (Advanced Microcontroller 

Bus Architecture).The AMBA AHB is for high-

performance, high clock frequency system modules. The 

AHB acts as the high-performance system backbone bus. 

AHB supports the efficient connection of processors, on-

chip memories and off-chip external memory interfaces 

with low-power peripherals.  

 It has their own bandwidth requirements and 

responding speed requirements for SDRAM. By analyzing 

the multiple accesses from the modules and the SDRAM 

specifications such as its accessing delay, we take both side 

1 and side 2 into consideration respectively. On side 1, we 

use bank closing control. On side 2, the controller employs 

two data write FIFO to reduce the data access awaiting 

time, and uses 2 read FIFO to decrease the CAS delay time 

when reading data from SDRAM.  

 Due to the complexity of implementing the 

interleaving technique, we haven’t introduced that 

technique to our design yet. However our design is proved 

to be functionally correct and high-performance. A  

SDRAM must be initialized before starting to access it. The 

configurable timing analysis scheme considers that the 

timing process might have tiny differences between 

different SDRAMs from different corporations 

II. Related Work  
 On-chip bus organized is among the top challenges 

in SoC technology due to rapidly increasing operation 

frequencies and growing chip size. Usually, IP cores, as 

constituents of SoCs, are designed with many different 

interfaces and communication protocols. Integrating such 

cores in a SoC often requires insertion of suboptimal glue 

logic. Standards of on-chip bus structures were developed 

to avoid this problem. Currently there are a few publicly 

available bus architectures from leading manufacturers, 

such as Core Connect from IBM, AMBA from ARM, 

Silicon Backplane from Sonics, and others. This paper 

focuses on SoC providing a survey of three popular buses 

called AMBA, Core Connect and Wishbone from an 

industrial and research viewpoint. 

 

2.1 Advanced High-performance Bus (AHB) 

 

 AHB is a new generation of AMBA bus which is 

intended to address the requirements of high-performance 

synthesizable designs. It is a high-performance system bus 

that supports multiple bus masters and provides high-

bandwidth operation. AHB is for high clock frequency 

system modules. It acts as the high-performance system 

backbone bus. AHB supports the efficient connection of 

processors, on-chip memories and off-chip external 

memory interfaces with low-power peripherals. 

 AMBA AHB implements the features required for 

high-performance, high clock frequency systems including: 

which are burst transfers, Pipelined operation, multiple bus 

masters, split transactions, wider data bus configurations 

(64/128 bits) 
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 Bridging between this higher level of bus and the 

current ASB/APB can be done efficiently to ensure that any 

existing designs can be easily integrated. An AMBA AHB 

design may contain one or more bus masters, typically a 

system would contain at least the processor and test 

interface. However, it would also be common for a Direct 

Memory Access (DMA) or Digital Signal Processor (DSP) 

to be included as bus masters.  

 The external memory interface, APB Bridge and 

any internal memory are the most common AHB slaves. 

Any other peripheral in the system could also be included 

as an AHB slave. However, low-bandwidth peripherals 

typically reside on the APB. A typical AMBA AHB system 

design contains the following components. A bus master 

which is able to initiate read and write operations by 

providing an address and control information. Only one bus 

master is allowed to actively use the bus at any one time.  

  Even though the arbitration protocol is fixed, any 

arbitration algorithm, such as highest priority or fair access 

can be implemented depending on the application 

requirements and the AHB decoder is used to decode the 

address of each transfer and provide a select signal for the 

slave that is involved in the transfer. 

 AHB signal prefixes: H indicates an AHB signal. 

For example, HREADY is the signal used to indicate that 

the data portion of an AHB transfer can complete. It is 

active HIGH. 

 

2.2 Advanced System Bus (ASB) 
  An AMBA-ASB based microcontroller typically 

consists of a high-performance system backbone bus, able 

to sustain the external memory bandwidth, on which the 

CPU and other Direct Memory Access (DMA) devices 

reside, plus a bridge to a narrower APB bus on which the 

lower bandwidth peripheral devices are located. ASB signal 

prefixes B is an ASB signal for example, BnRES is the 

ASB reset signal. It is active LOW. 

  The ASB is a high-performance pipelined bus, 

which supports multiple bus masters. The basic flow of the 

bus operation is that the arbiter determines which master is 

granted access to the bus. When granted, a master initiates 

transfers on the bus. 

 The decoder uses the high order address lines to 

select a bus slave. The slave provides a transfer response 

back to the bus master and data is transferred between the 

master and slave. 

 

 2.3 Advanced Peripheral Bus (APB) 

  

 The AMBA ArPB should be used to interface to 

any peripherals which are low bandwidth and do not require 

the high performance of a pipelined bus interface. The latest 

revision of the APB ensures that all signal transitions are 

only related to the rising edge of the clock. The changes to 

the APB also make it simpler to interface it to the new 

Advanced High-performance Bus (AHB).  

 

III.  AHB COMPLIANT SDRAM 

CONTROLLER 
 We used FIFO to store the Read/Write commands 

coming from processors/user side along with corresponding 

write data and included a search engine to search recently 

read/write data inside the FIFO in order reduce the clock 

cycles of fetching data from SDRAM. 

  

 
Figure:.3.1 System Module 

   

 Synchronous dynamic random access 

memory (SDRAM) is dynamic random access 

memory (DRAM) that is synchronized with the system bus. 

Classic DRAM has an asynchronous interface, which 

means that it responds as quickly as possible to changes in 

control inputs. SDRAM has a synchronous interface, 

meaning that it waits for a clock signal before responding to 

control inputs and is therefore synchronized with the 

computer's system bus enabling higher speed. The SDRAM 

controller is capable of either 16-bit or 32-bit data path, and 

supports byte, half-word and word access. Bursts can be 

used for both write and read access.       

 
Figure:.3.2 SDRAM Array structure 

 

 In DRAM devices, large numbers of DRAM cells 

are grouped together to form DRAM array structures. 

Above figure illustrates a single bank of DRAM storage 

cells where a row address is sent to the row decoder, and 

the row decoder selects one row of cells. 

 A row of cells is formed from one or more word 

lines that are driven concurrently to activate one cell on 

each one of thousands of bit lines. There may be hundreds 

of cells connected to the same bit line, but only one cell will 

place its stored charge from its storage capacitor on the bit 

line at any one time. The resulting voltage on the bit line is 

then resolved into a digital value by a sense amplifier. 
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3.1 Functional Description of SDRAM 

 The SDRAM achieve high-speed operation. A 

single read or write access for the SDRAM effectively 

consists of a single n-bit-wide, one-clock cycle data transfer 

at the internal DRAM core and one corresponding n-bit-

wide, one- clock-cycle data transfers at the I/O pins. 

A bidirectional data strobe (DQS) is transmitted externally, 

along with data, for use in data capture at the receiver. DQS 

is a strobe transmitted by the SDRAM during READs and 

by the memory controller during WRITEs.  

DQS is edge-aligned with data for READs and center-

aligned with data for WRITEs. The SDRAM operates from 

a different clock (CK and CKE); the crossing of CK going 

HIGH and CKE going LOW will be referred to as the 

positive edge of CK. Commands (address and control 

signals) are registered at every positive edge of CK. Input 

data is registered on both edges of DQS, and output data is 

referenced to both edges of DQS, as well as to both edges 

of CK. Read and write accesses to the SDRAM are burst 

oriented; accesses start at a selected location and continue 

for a programmed number of locations in a programmed 

sequence.  Accesses begin with the ACTIVE command, 

which may then be followed by a READ or WRITE 

command. The address bits issued coincident with the 

ACTIVE command are used to select row to be accessed. 

The address bits registered coincident with the READ or 

WRITE command are used to start the column location for 

the burst access. The SDRAM provides for programmable 

READ or WRITE burst lengths of 2, 4, or 8 locations. As 

with standard SDRAMs, the pipelined architecture of 

SDRAMs allows for concurrent operation, thereby 

providing high effective bandwidth by hiding row recharge 

and activation time. 

         

 
   Figure: 3.1 Simplified SDRAM Diagram 

 Row addresses are present on address pads and are 

internally validated by the RAS (Row Address Access) 

clock.  A bar on top of the signal name means this signal is 

active when it is at a low level. The X addresses select one 

row through the row decode, while all the other non-

selected rows remain at 0V.  

 Column addresses are present on the address pads 

and are internally validated by the Column Address Access 

(CAS) clock.  Each selected memory cell has its data 

validated in a sense amplifier. In modern DRAM devices, 

the capacitance of a storage capacitor is far smaller than the 

capacitance of the bit line. Typically, the capacitance of a 

storage capacitor is one-tenth of the capacitance of the long 

bit line that is connected to hundreds of other cells [2]. 

  The relative capacitance values create the scenario 

that when the small charge contained in a cell is placed on 

the bit line, the resulting voltage on the bit line is small and 

difficult to measure in an absolute sense. In DRAM 

devices, the voltage sensing problem is resolved through 

the use of a differential sense amplifier that compares the 

voltage of the bit line to a reference voltage. 

 

Operation of SDRAM controller 

 Only one open row in an active bank can be 

accessed. An ACTIVE command can open a row and make 

active the particular row in the memory. A PRECHARGE 

command issued to memory can set the SDRAM to idle 

state, i.e. closing the open row in this memory. If every 

time after accessing a row AUTOPRECHARGE command 

is performed, and the next access is actually involving the 

same row of the same bank, an ACTIVE command needs to 

be applied again in order to access last open row. 

 

  As it is known that time needed between ACTIVE 

and READ/WRITE commands has to be fulfilled. In a 

successive period of time a program probably only accesses 

a small part of continuous address space. So that it is not 

necessary to issue an AUTO-PRECHARGE command after 

every read/write access without judging if there’s any need. 

If the current access is for an open row in an active bank, 

the READ or WRITE command is directly issued to the  

SDRAM, the  ACTIVE and READ or WRITE commands.  

 

 When the auto-refresh is required, all the active 

banks will be inactivated by applying PRECHARGE ALL 

command as auto-refresh can only be issued when the 

whole SDRAM is in idle state. In this way, the overhead 

caused by frequently opening and closing the SDRAM 

banks can be decreased. The figure below is the whole 

architecture for our SDRAM controller which has the data 

path relating to read and write FIFO, AMBA interface and 

SDRAM. 

  The memory controller basically consist of three 

main sub parts, they are  

A. 2 Read and 2 write FIFOs 

B. Command generator 

C. Command scheduler 
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Figure: 3.1 Architecture of SDRAM controllers 

 

3.2 Read FIFO 
                   An AHB (Advanced High-performance Bus) 

transfer consists of two distinct sections, the address phase 

and the data phase. The address phase lasts only a single 

cycle. The address and some control signals are transferred 

from a master to a slave during this phase. During the data 

phase, data and responding signals are delivered. If a slave 

can’t finish the data phase in one cycle, it can use 

HREADY to make the master hold the address and control 

signals. During the data phase, slave will send the 

corresponding response signals to the master to notify if the 

transfer is successfully finished or if it needs to retry the 

transfer. 

 

  It is known that, SDRAM cannot finish the data 

access in a single cycle. So we need some strategies to 

decrease the responding time. We analyzed our application 

and found that if the SDRAM is accessed in the single 

mode, the needing data is available at least after 2 cycles 

Plus time consumed by the latching in the bus interface part 

and the PRECHARGE command, in fact, it is more than 2 

cycles. To support the fast response time, burst mode access 

and read FIFOing techniques need to be used whenever 

possible. 

 

 When AHB bus needs to read data, see if data is 

already in read FIFO by only checking if the current 

accessing address is in the range of either of the read FIFO 

and if the corresponding bit in the corresponding Valid 

Vector is valid. The Valid Vector is used to mark if the data 

stored in data FIFO is valid. Valid Vector works like tags 

for a cache.  Every read FIFO is only as big as the capacity 

of a SDRAM burst, so that Valid Vector is only a several 

bit vector. If the needed data is in read FIFO, data can be 

directly read from them, otherwise, a READ command is 

needed issuing to SDRAM.  

 After a preset number of clock cycles, the data is 

available on the output latches of the SDRAM for reading, 

and data is delivered to AHB bus and written to one of the 

read FIFO at the same time. The whole burst access data 

will be loaded in read FIFO.  

 

  In this way, we implemented perfecting. According 

to the local principles of programs, the next read access is 

possibly a successive address to the current one. So the next 

data can be read from read FIFO, which can fasten the 

responding speed. In order to reduce the complexity of 

implementing read FIFO, data from SDRAM are stored in 

read FIFO 0 and read FIFO1 in turn. 

 

3.3 Writing or ping-ponging 

 As it is described about the AHB, in order to reduce 

the responding time to write access, write FIFO are used to 

pack and align the data when the AHB bus data transfer 

size does not match the SDRAM data bus width. Based on 

our previous research on FPGA designs, we didn’t use only 

one write FIFO, instead, we use 2 FIFO. It is well known 

that ping-ponging can reduce or eliminate the mismatch 

effects between 2 different modules which are operating at 

different speeds. 

  By utilizing ping-ponging between the two write 

FIFO, part of the time writing one FIFO and part of the 

time moving data from another FIFO to off chip SDRAM 

can be overlapped. 

 
Figure: 3.2 FIFO state machines 

 

  If write FIFO 0 is not empty and write FIFO 1 is 

being written by AHB bus, move FIFO 0’s data to SDRAM 

and this FIFO will be in the progress of moving until all 

data is moved to SDRAM, vice versa. This is the ping-

ponging technique we used between write FIFO 0 and write 

FIFO 1 [1]. 

The flow of moving data from FIFO to SDRAM is as 

follows 

 If write FIFO 0 is empty, data will be written to 

write FIFO 0. Else if write FIFO 1 is in the progress of 

AHB writing and write If write FIFO 0 is being written by 

AHB bus and write FIFO 1 is not empty, move FIFO 1’s 

data to SDRAM and if FIFO 0 is not empty, move FIFO 0’s 

data to SDRAM. 
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 This flow explains how the ping-ponging can make 

the time writing FIFO and writing SDRAM overlap. The 

description of operations about AHB bus writing FIFO is as 

follows: 

 If write FIFO 0 is empty, data will be written to 

write FIFO 0. Else if write FIFO 0 is not empty or in the 

progress of moving its data to RAM and if write FIFO 1 is 

empty, data will be written to write FIFO 1. Else make the 

AHB bus hold the bus signals until one of the FIFO is 

empty. 

 

 
Figure:3.3 Single Data flow to and from the FIFOs 

 

3.4 Read Update Logic 

 One of the novel features of this controller is the 

internal search which is carries out before giving the 

request to the DRAM. When the controller encounters a 

read command at the head of the FIFO queue, it takes this 

command and searches the FIFO to see if the required data 

is already in the FIFO. 

 

  This search is carried out in parallel and all the 

FIFO locations are searched in one clock cycle. Hence the 

searching time is not dependent on the depth of the FIFO 

but at the cost of hardware overhead. The flag bit (executed 

/ not executed) aids in the search.  

  

IV. IV SIMULATION RESULTS 

AND SYNTHESIS REPORT 

 
Figure: 4.1 SDRAM Memory 

     

 
Figure: 4.2 Un modified SDRAM Controller 

 

 
Figure: 4.3 Modified SDRAM Controller   

 

 
Figure: 4.4 SDRAM RTL schematic 
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Figure: 4.4 SDRAM RTL schematic 

 

Testing results between our controller and the 

traditional controller, the speedup rate difference is 

2.1ns. Moreover, for the two SDRAM controllers, we 

compared the times of issuing READ and WRITE 

commands to off chip SDRAM while running the 

application program. It is shown in Table 17, running 

the same application program, modified SDRAM 

controller can reduce the times of accessing off chip 

SDRAM, which has a heuristic meaning for low 

power designs as well. 

 The results in table 1 are normalized according 

to those from the SDRAM controller described in this 

paper. The frequency of the whole SoC got from ISE 

is 92 MHZ for the existing SDRAM controller and 

114MHZ for the modified SDRAM controller we 

described in this paper. We can see that our SDRAM 

controller has made a significant decrease of the total 

execution time of the application program. 
 

Table: 1 

Parameters Existing 

SDRAM 

Modified 

SDRAM 

Minimum period 10.832ns 8.743ns 

Maximum 

Frequency 

92.319MHz 114.383MHz 

Minimum input 

arrival time before 

clock 

9.902ns  6.914ns 

Maximum output 

required time after 

clock 

12.479ns 10.075ns 

Maximum 

combinational path 

delay 

11.460ns No path found 

 

 

Conclusion 
 An AHB interfaced high-performance SDRAM 

Controller has been proposed, verified and evaluated we 

find this SDRAM controller has high performance by 

taking good use of the features of SDRAM architecture and 

utilizing the well-known techniques such as data FIFOing 

and ping-ponging and burst-mode-data transfer. In this 

paper  testing results shows 91.66% of reduced delay with 

FIFOing when compared to the latency produced with 

FIFOing, which is nothing but in-built memory used within 

the SDRAM controller to improve its performance. 
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