
Efficient Parallel Data Processing for Dynamic

Resource Allocation in the Cloud
Anand Prabu P

(1)
,Dhanasekar P

(2)
 ,Sairamprabhu S G

(3)

(1)Department of Computer Science and Enginnering,RVS College of Engineering and Technolgy,Anna University.
(3)

Department of Computer Science and Enginnering,RVS College of Engineering and Technolgy,Anna University.
(1)

a.prabu7@gmail.com
(3)
sairambit@gmail.com

 (2)
Department of Computer Science and Enginnering,RVS College of Engineering and Technolgy,Anna

 University.
 (2)

write2sekar@gmail.com

Abstract—In recent years ad hoc parallel data processing is one of the emerging applications for Infrastructure-as-a-Service (IaaS) cloud

environment. The current processing frameworks has been designed for homogenous cloud setup, which consequently leads to increased

processing time and cost. In this paper we present Nephele, a first data processing framework for exploiting dynamic resource allocation

in an cloud environment. Particular tasks of a processing job can be assigned to different types of virtual machines which are

automatically instantiated and terminated during the job execution. Based on this framework, we perform Map Reduce-inspired

processing jobs on an IaaS cloud system and compare the results to the popular data processing framework Hadoop.

I.INTRODUCTION

In recent times, number of companies have to process

large amounts of data in a cost-efficient manner.

Classic examples for these companies are Google,

Yahoo, or Microsoft. The huge amount of data they

work with has made traditional database solutions

expensive . Instead, these companies has gone for large

number of commodity servers. To simplify the

development of distributed applications , many of these

companies have also built data processing frameworks.

Google’s MapReduce , or Yahoo!’s Map-Reduce-

Merge are examples of the above. They are classified

into terms like high-throughput computing

(HTC) or many-task computing (MTC), depending on

the amount of data and the number of tasks involved in

the

computation . Though these two systems differ in

design,but their programming models share similar

objectives. The

 framework takes care of distributing the program

among the nodes and executes each

instance of the program on the appropriate fragment of

data. Instead, Cloud computing has emerged as an

great approach to rent a large IT infrastructure Amazon

EC2 is an operator which allow their clients to access,

allocate, and control a set of virtual machines (VMs)

which run inside their data centers and charge them for

the period of time the machines were used. The VMs

are typically offered in different types,

based on characteristics and cost. Since projects like

Hadoop an exsisting open source implementation of

Google’s MapReduce framework, already promoted

their frameworks in the cloud . However, instead of

embracing its dynamic resource allocation, current data

processing frameworks expect the cloud to produce the

static nature of the cluster environments they were

originally designed .As a result, rented resources may

be not sufficient for processing a job, which may lower

the overall performance and increase the cost. In this

paper, we want to present Nephele, a new processing

framework designed for cloud environments. Nephele

is the first and best data processing framework to

perform dynamic allocation/deallocation of resources

from an cloud during job execution.This paper includes

details on scheduling strategies and results. The paper

is structured as follows: In Section 3, we

present basic Nephele architecture and describe how

jobs are executed in the cloud. Section 4 provides

somedetails on Nephele’s performance and

International Journal of Advanced and Innovative Research (2278-7844) / # 410 / Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 410

mailto:a.prabu7@gmail.com
mailto:sairambit@gmail.com
mailto:write2sekar@gmail.com

optimizations .Finally, paper is concluded by related

work.

II.CHALLENGES

 In this section, we briefly discuss the

challenges in efficient data parallel processing.The

major challenge is cloud opaqueness.Current data

processing techniques attempt to schedule the

computed nodes with knowledge about network and

thus avoid bottlenecks.In cloud ,information about the

topology is completely hidden from users,so this may

create congestion in the network. So therefore the

system must become aware of the cloud environment

and the jobs executed.Also the paradigm used should be

powerful to depict the dependencies.The system should

be aware of when to allocate/deallocate the VM’s.

Finally, the scheduler of such a processing framework

must be able to determine which task of a job should be

executed on which type of VM. To ensure locality

between tasks of a processing is to execute these job’s

task on the same VM . This may help in allocating

fewer,but powerful VMs with multiple CPU

cores.Scheduling the task in VM with multiple cores

than single core machines ensures data locality.

III.DESIGN:

 Based on the challenges,we design

Nephele,first data processing framework for cloud.

A.ARCHITECTURE

 Nephele’s architecture follows a pattern as

illustrated in Fig. 1.

 Fig 1.Nephele Architecture

Before submitting a Nephele’s job, a VM must be

started by the user in the cloud which runs the Job

Manager (JM). The Job Manager receives the jobs,

schedules them, and coordinates execution. It can

communicate with the interface the cloud operator to

provide the control to instantiate the VMs and this is

termed as the Cloud Controller. Using the Cloud

Controller the JM can allocate/deallocate VMs based on

the current job execution. The term instance type is

used to show difference between VMs with multiple

differnt hardware characteristics.The execution of

Nephele job tasks is carried out by a set of instances.

Every instance runs a so-called Task Manager (TM). A

Task Manager

receives the tasks from the Job Manager ,executes

them, and t informs the Job Manager

about their completion or possible errors. Unless the

Job Manager gets ajob, we assume the set of instances

as empty. Upon receivable of job the Job Manager then

decides, how many and what type of instances the job

should be executed and when the corresponding

instances must be allocated/deallocated to ensure a

cost-efficient processing.

B. SCHEDULING STRATEGIES:

The Basic idea to refine the scheduling strategy

for recurring jobs is to use feedback data. We develop a

system for Nephele which continuously monitor’s

running tasks and the instances. Based on the Java

Management Extensions (JMX) the system is capable

of breaking down its processing time that a task

spends processing user code and the time it waits for

data. With the collected data Nephele is able to detect

computational and I/O bottlenecks.The computational

bottlenecks suggests that higher degree of

parallelization for the tasks, I/O bottlenecks provides

hints to switch to faster channel types and reconsider

the instance.Then Nephele generates a cryptographic

signature for every task and recurring tasks can be

identified and already recorded data can be

exploited.Now, we use the profiling data to detect the

bottlenecks and provide the user to choose annotations

for the job A user can use the feedback to improve the

job’s annotations. In advanced versions of Nephele, the

system can automatically adjust to detected bottlenecks

between continuous executions of the same job or at

job’s execution at runtime. The allocation time of cloud

instances is determined by the start times of the

International Journal of Advanced and Innovative Research (2278-7844) / # 411 / Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 411

subtasks, there are different strategies for deallocation.

Nephele can track the instances’ allocation times. An

instance of a each type in the execution stage is not

immediately deallocated if same instance type is

required in an upcoming execution Stage.So, Nephele

retains the instance allocated till the end of current

lease period. If the preceding execution phase has

begun before the end of the previous period, it is

reassigned to an execution of precding stage, else it

deallocates early enough not to cause any additional

cost.

IV EVALUTION

 In this section, we present the first

performance results of Nephele and compare it to the

Hadoop’s data processing framework. We have chosen

Hadoop , because it is an open source software and

enjoys high popularity in the data processing.Hadoop

has been designed

to run on a very large number of nodes (i.e., thousands

of nodes) in current IaaS clouds.The general Map

Reduce technique has been chosen to run on both the

framework.In the preceding section A general Map

Reduce on Hadoop and section B describes the general

Map Reduce on Nephele framework.

A. MAPREDUCE AND HADOOP:

 In order to execute the task with Hadoop, we

created different MapReduce programs which were

executed consecutively.The MapReduce job reads the

input data set, counts number of occurences of each and

writes them back to Hadoop’s HDFS file system. Since

the MapReduce engine is internally designed to count

the incoming data words between the map and the

reduce phase. Instead, we simply used the word count

code, which is well suited for these kinds of tasks. The

result of this MapReduce job was a file with count of

words in the input file.

B. MAPREDUCE AND NEPHELE:

 For Nephele, we used the same MapReduce

program we wrote for the previously described Hadoop

experiment and execute them on top of Nephele In

order to do , we develop a set of wrapper classes

providing interface compatibility with Hadoop and

required functionality. These classes allowes us

to run the unmodified Hadoop MapReduce programs

with Nephele. As a result, the data flow will be

controlled by the executed MapReduce programs while

Nephele is able to manage the allocation/deallocation of

tasks to instances during the experiment.This

experiment highlights the effect of thedynamic

resource allocation/deallocation while still comparing

to Hadoop. Nephele is used to create the

communication paths that match the MapReduce

processing pattern.

C.RESULTS:

 Fig2 shows the performance comparison of

the two experiment. The plot illustrates the average

execution time based on the size of the datebase used in

the experiment.

Fig2 . Performance Comparison between Hadoop and

Nephele.

The plot shows that the average time taken to complete

the MapReduce job takes much longer time in Hadoop

when compared to Nephele framework.

V CONCLUSION:

This paper describes that the proposed nephele

framework improves the performance of the system in

efficient parallel data processing for dynamic resource

allocation in cloud. Nephele Framework improves the

performance of the system in-terms of time and cost.So

we conclude the work by saying that proposed system

will improve the performance of the system by

improving the time taken to execute a job when

compared to Hadoop and this ensures that the reliability

of the system is also achieved in terms of cost,because

the cloud storage space is rented on the basis of time.

International Journal of Advanced and Innovative Research (2278-7844) / # 412 / Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 412

REFERNCES

[1] Amazon Web Services LLC, “Amazon Elastic Compute

 Cloud (Amazon EC2),” http://aws.amazon.com/ec2/, 2009.
[2] Amazon Web Services LLC, “Amazon Elastic

 MapReduce,” http://aws.amazon.com/elasticmapreduce/,

 2009.
[3] Amazon Web Services LLC, “Amazon Simple Storage

 Service,”http://aws.amazon.com/s3/, 2009.

[4] D. Battre´, S. Ewen, F. Hueske, O. Kao, V. Markl, and
 D.Warneke,“Nephele/PACTs: A Programming Model and

 Execution Framework for Web-Scale Analytical

 Processing,”
 Proc. ACM Symp.Cloud Computing (SoCC ’10), pp. 119-

 130, 2010.

.[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
 Processing on Large Clusters,” Proc. Sixth Conf. Symp.

 Opearting Systems Design and Implementation (OSDI

 ’04), p. 10, 2004.
[6] A. Kivity, “Kvm: The Linux Virtual Machine Monitor,”

 Proc. Ottawa Linux Symp. (OLS ’07), pp. 225-230, July

 2007.
[7] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.

 Soman, L.Youseff, and D. Zagorodnov, “Eucalyptus: A

 Technical Report onan Elastic Utility Computing
 Architecture Linking Your Programsto Useful Systems,”

 technical report,Univ. of California, SantaBarbara, 2008.
[8] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan,

 “Interpreting the Data: Parallel Analysis with Sawzall,”

 Scientific Programming,vol. 13, no. 4, pp. 277-298, 2005.
[9] I. Raicu, I. Foster, and Y. Zhao, “Many-Task Computing for

 Grids and Supercomputers,” Proc. Workshop Many-Task

 Computing on Grids and Supercomputers, pp. 1-11, Nov.
 2008.

[10] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde,

 “Falkon:A Fast and Light-Weight TasK ExecutiON
 Framework,” Proc.ACM/IEEE Conf. Supercomputing

 (SC ’07), pp. 1-12, 2007.

 [11] M. Stillger, G.M. Lohman, V. Markl, and M. Kandil,
 “LEO—DB2’s LEarning Optimizer,” Proc. 27th Int’l Conf.

 Very Large Data Bases (VLDB ’01), pp. 19-28, 2001.

[12] The Apache Software Foundation “Welcome to Hadoop!”
 http://hadoop.apache.org/, 2009.

 [13] T. White, Hadoop: The Definitive Guide. O’Reilly Media,

 2009.
[14] Y. Zhao, M. Hategan, B. Clifford, I. Foster,

 G. von Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun,

 and M.Wilde, “Swift: Fast, Reliable, Loosely Coupled
 Parallel Computation,” Proc. Services, ’07 IEEE Congress

 On, pp. 199-206, July 2007.

[15] D. Warneke and O. Kao, “Nephele: Efficient Parallel Data
 Processing in the Cloud,” Proc. Second Workshop Many-

 Task Computing on Grids and Supercomputers

 (MTAGS ’09), pp. 1-10,2009.

International Journal of Advanced and Innovative Research (2278-7844) / # 413 / Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 413

