
International Journal of Advanced and Innovative Research (2278-7844) / # 388/ Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 388

1

TRAFFIC ANALYSIS IN HIGH SPEED

NETWORK USING DATA MINING

TECHNIQUES
M.LAKSHMIPRIYA.,(M.E),G.LOGANATHAN.,M.E.,(AP/IT)

Dept of CSE MUTHAYAMMAL ENGINEERING COLLEGE
lpmlakshmipriya@gmail.com,logo.mscme@gmail.com

Abstract:

 This paper describes an effective way to capture network traffic in high speed networks

and analyze the captured traffic using data mining techniques. We address the problems in

storing and processing large amount of data in this paper. After having provided the current state

of the art in significantly reducing the amount of data stored we describe our approach, which

consists of two strictly related parts. It defines a format to represent captured packets that (i)

limits the amount of data stored and (ii) enables efficient processing. Data mining techniques

widely studied and deployed for extracting relevant information from extremely large data bases

are applied to our problem. A prototypal implementation of the proposed approach has been

integrated into the Analyzer traffic capturing and analysis tool. It discusses the benefits and

limitations expected from the deployment of the proposed approach, especially for what

concerns the extraction of relevant information, which is still under evaluation.

INTRODUCTION:
The most critical issue in keeping a

widespread network under our control is

capturing and analyzing its traffic. The

complexity of the task increases as the

network becomes faster and faster. Traffic

capturing and analysis goes through the

steps depicted in the following figure-Figure

1, all of which are critical when operating at

high data rates.

Figure 1 - Basic steps in network

traffic capture and analysis

Some equipment vendors, such as

Endace offer network interfaces specifically

designed for supporting packet capture at

high data rates (e.g., 10 Gbps), thereby

facilitating the realization of the first step in

Figure 1.The time required to receive a

minimum size Ethernet frame at 10 Gbps

speed is less than 70 ns, which leaves a few

hundred clock cycles to a multi-GHz

processor for handling a captured packet.

This makes the realization of the second step

critical. However, the deployment of multi-

processor machines that concurrently

process multiple packets increases the time

available for handling each packet.

While ad-hoc solutions based on

advanced hardware can mitigate the

problems related to the first two steps in

Figure 1, no straightforward solution exists

to reduce the criticalities of the next steps

International Journal of Advanced and Innovative Research (2278-7844) / # 389/ Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 389

2

and we need to face the below two

problems: The infrastructure needed to store

such amount of data is sophisticated and

costly

Locating relevant information within the

saved data is computationally intense and

time consuming.

Existing Methods to reduce the

amount of stored information:
Two methods are known in literature

to reduce the amount of information about

network traffic to be stored before further

processing.
Packet Sampling

 We’ll be capturing only a subset of

the packets, e.g. one out of N. Although

several studies demonstrate that statistical

properties can be inferred from sampled

traffic without any noticeable loss of

information, this approach is not effective

when all packets must be analyzed. One

example is the detection of network attacks

that are usually based on a small number of

packets exploiting a security bug (e.g. ping

of death)

Flow Extraction

The second method is based on the

fact that each packet can be associated to a

flow (e.g. a TCP connection). A flow can be

defined as the set of packets that share the

value of some fields in their headers (e.g. IP

source and destination addresses, TCP

source and destination ports, etc.), which

can be seen as the signature of the flow.

Flow-based techniques use this signature as

elementary unit for storing traffic

information: the network administrator is no

longer able to see complete packets, but this

might not be necessary for most

applications. However, this approach cannot

be used in case the payload should be

available for inspection, e.g. in case of

applications that detect network attacks

based on some data in the packet payload

(e.g. a malformed URL).

SFlow Technology:

The SFlow technology is a mixture

between packet sampling and flow

extraction. Packet sampling is deployed to

achieve scalability and either sampled

packets or the flow information related to it

can be exported. This approach makes this

technology suitable for a large set of

environments because it allows both packet

analysis (although limited to the first few

hundred bytes of the packet) and flow

analysis. The most important limitation is

the lack of support from some of the key

equipement vendors.

A common problem among the

presented technologies is the impossibility

to customize the set of fields being stored

for each flow, which is one of the key

advantages of the approach presented in this

paper. Other solutions, such as standards

like RMON (the IETF’s remote network

monitoring system) or applications like ntop,

provide another way to measure network

traffic. However, while they allow a network

manager to determine traffic levels in

network segments, total traffic loads to/from

busy hosts, etc., they do not provide any

flow measurement capability.

DATA COLLECTION AND STORAGE:

Saving to disk each captured packet

or possibly just a snapshot of it may be

feasible in some cases, but it anyway

requires a significant amount of resources.

Therefore, such approach cannot be

considered as the basis of generic traffic

monitoring procedures. In any case, single

packets are not necessarily relevant for

many types of traffic analysis whose focus is

on packet flows. Our approach is based on

flow-based processing: a probe collecting

International Journal of Advanced and Innovative Research (2278-7844) / # 390/ Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 390

3

data saves a given set of information related

to each flow, rather than dumping to disk

(part of) the content of each packet. As

mentioned earlier, a flow is a set of packets

that have the same values in a given set of

fields; in our approach they are not

necessarily IP source/destination address,

source/destination port, and protocol type —

widely used as transport flow identifiers in

TCP/IP networks. Our flow definition

mechanism is more general and several

fields can be included in the set that best

characterizes each flow. For instance, if the

administrator is interested in the analysis of

differentiated services traffic, the value of

the DS field can be saved for each flow.

Alternatively, if the administrator is

interested only in the accounting based on

the IP source Address, this can be the only

parameter identifying a flow. Due to the

flexible architecture of the underlying

dumping mechanism, the addition of a new

field in the definition of flows does not

preclude the possibility of extracting

statistics on previously stored data that do

not have such information. Our approach

also supports netmasks (e.g. network

130.192.0.0/16). The problem of using such

a coarse flow definition is that there is no

way to disaggregate data. For example, the

amount of traffic sent by each host cannot be

known. The most relevant novelty of our

approach is that the fields that are saved for

each flow are completely customizable. For

instance, the fields that are extracted by

default in the current prototypal

implementation of our solution are listed in

Table 1; however, any field present in any

protocol header can be extracted. The flow

identification process does not require all

these fields to be present at the same time:

for example, ARP related fields are not

present when analyzing IPv6 flows.

Table 1. Default list of fields extracted for

each flow.

For each packet the probe determines

the flow the packet belongs to and updates a

set of counters (e.g. number of

bytes/packets, timestamps, etc.). The

selected fields are extracted for each flow

and periodically dumped to disk together

with the value of the above counters.

 In order to support a variable

number of fields within each flow, data is

organized in three tables:

1. A transaction table keeps invariant

information related to each flow;

2. An element table holds, for each flow,

the list of fields to be stored;

3. The Field Type table lists all valid fields.

 Figure 2. Structure of the

database that stores network flows.

Figure 3 shows a sample table. Although

this structure is slightly more complex than

International Journal of Advanced and Innovative Research (2278-7844) / # 391/ Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 391

4

the traditional one (one table with a fixed

number of fields, and one record per flow),

it has proved much more flexible.

Figure 3. Snapshot of records stored in

the database
SQLite was selected as a database

engine since, as shown by Table 2, it

provides very fast access and its overhead is

only 5 times the time required to store data

on a flat file (see Table 3). Since this engine

cannot be configured as a standalone

database server, scalability might become a

problem because of the impossibility to split

the load between the network probe and the

database server. In order to optimize record

insertion time, the flow export process

dumps data on disk in a flat file and

subsequently data are imported in the

database through a bulk insertion. This also

offers the flexibility to use a different

database engine if needed, at the expense of

disk space and speed.

Database Type Record/sec written on disk

Table 2. Number of records per seconds

written on disk. Obviously, as shown in

Table 3, increasing the duration of the

flushing interval, further increases (even

though mildly) the disk-saving factor.

However, according to the figures shown in

Table 3, a flushing interval larger than two

minutes is not advisable since the database

reduction is not significant while a longer

sampling period makes computing traffic

statistics harder.

Table 3. Disk space saving with different

archive formats and sampling intervals.

IV.MINING RELEVANT

INFORMATION

A set of standard statistics (e.g. the

protocol distribution, the amount of traffic

sent by every host, etc.) can be easily

obtained from the data stored as described

above. However, even though the proposed

approach results in significantly less

information than a raw packet dump would

produce, locating added-value information

(e.g., locating an ongoing security attack)

might be extremely cumbersome, if at all

possible, for the network administrator. We

have been experimenting the application of

data mining techniques to large databases

structured as described in the previous

section, wherein each sample of a flow is

represented by a record. An Item set is a set

of elements – (record field, value) pairs in

the database – characterized by a given

value in one or more fields (e.g., IP source

address and TCP source port). An Item set is

considered Frequent if its cardinality

exceeds a given threshold with respect to the

total number of samples.For example, the set

{host_dest=X, port_dest=Y} is a Frequent

Itemset if there are more than Z% (e.g. 5%)

samples in the database containing the set.

International Journal of Advanced and Innovative Research (2278-7844) / # 392/ Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 392

5

Association Rules are extracted from

frequent itemsets and show correlations

among (contained) itemsets. For instance, if

a host S is active mostly as a web server, the

association rule: IP dest_address = S → TCP

dest_port = 80shows that there is a high

probability that the flows destined to the

server (characterized by the value S in the IP

destination address field) contain 80 (the

default TCP port for a webserver) in the

TCP destination port field.

Data mining techniques are not

widely used for network operation and

management. Most research is related to

intrusion detection systems (IDS). Lee, in

[14] proposes IDS built combining various

data mining techniques, thus reducing the

need to manually analyze and encode

intrusion patterns.

A method has been proposed to build

an IDS based on clustering and anomaly

detection. This method aims at dividing

network traffic into clusters and then

separate clusters containing normal traffic

from clusters that represents intrusions,

without requiring a “normal data set” to

train the system. However, the assumptions

on which the method is based are not

realistic, thus making it of limited use in

practice. The most important problem of

IDS based on datamining techniques is the

false positive rate, which may well be

around 1%. For instance, a false positive

rate of 1% with the assumption of 1

intrusion every 10,000 normal transactions,

results in a false alarm ratio above 99%,

which makes these methods unusable

without additional techniques for false alarm

reduction.

We believe that data mining

techniques can be deployed much more

effectively in other fields where the false

positives are not an issue. In the work

presented in this paper the output of the data

mining process is used to create a snapshot

of the network: which hosts act as servers,

which ones are clients, which ones are

routers, and so on. The network

administrator can use the snapshot produced

by the NetMiner module to check if hosts

behave as expected; in addition, NetMiner

can highlight changes in the network by

comparing in snapshots taken at different

times.

CONCLUSION:

While the data collection and storage

approach can be considered stable, the data

mining approach still need a more detailed

evaluation and field trial. Also it is

important for network administrators to be

able to locate and monitor the traffic

generated by these applications that are

usually installed and controlled directly by

network users.

On the down side, our experience

with the approach shows that the

interpretation of results of the data mining

process is far from being straightforward.

This is mainly due to the large amount of

information returned by data mining

techniques that the network administrator is

required to go through. For example, it is not

uncommon that hundreds of thousands

association rules be identified on a traffic

trace. The problem of sifting through them is

emphasized by the fact that the network

administrator is not — and should not

become — a data mining expert. Thus, our

work on the NetMiner module has focused

on providing a user interface that, being

designed specifically for network analysis

applications, facilitates the network

administrator in browsing through the

results provided by the data mining process.

More work is being done to improve this

aspect of the tool. More investigation and

new results are expected on an important by-

International Journal of Advanced and Innovative Research (2278-7844) / # 393/ Volume 2 Issue 12

 © 2013 IJAIR. ALL RIGHTS RESERVED 393

6

product of the proposed approach: using the

outcome of the data mining process as an

extremely compact representation of

captured network traffic.

REFERENCES:

[1] L. Leita˜o, P. Calado, and M.

Weis, “Structure-Based Inference of XML

Similarity for Fuzzy Duplicate Detection,”

Proc. 16th ACM Int’l Conf. Information and

Knowledge Management, pp. 293-302,2007.

[2] A.M. Kade and C.A. Heuser,

“Matching XML Documents in Highly

Dynamic Applications,” Proc. ACM Symp.

Document Eng. (DocEng), pp. 191-198,

2008.

[3] D. Milano, M. Scannapieco, and

T. Catarci, “Structure Aware XML Object

Identification,” Proc. VLDB Workshop

Clean Databases (CleanDB), 2006.

[4] P. Calado, M. Herschel, and L.

Leita˜o, “An Overview of XML Duplicate

Detection Algorithms,” Soft Computing in

XML Data

Management, Studies in Fuzziness and Soft

Computing, vol. 255, pp. 193-224, 2010.

[5] S. Puhlmann, M. Weis, and F.

Naumann, “XML Duplicate Detection Using

Sorted Neighborhoods,” Proc. Conf.

Extending Database Technology (EDBT),

pp. 773-791, 2006.

[6] S. Guha, H.V. Jagadish, N.

Koudas, D. Srivastava, and T. Yu,

“Approximate XML Joins,” Proc. ACM

SIGMOD Conf. Management of Data, 2002.

[7] J.C.P. Carvalho and A.S. da

Silva, “Finding Similar Identities among

Objects from Multiple Web Sources,” Proc.

CIKM Workshop Web Information and

Data Management (WIDM), pp. 90-93,

2003.

[8] R.A. Baeza-Yates and B.

Ribeiro-Neto, Modern Information

Retrieval.Addison-Wesley Longman

Publishing Co., Inc., 1999.

[9] M.A. Herna´ndez and S.J. Stolfo,

“The Merge/Purge Problem for Large

Databases,” Proc. ACM SIGMOD Conf.

Management of Data, pp. 127-138, 1995.

[10] J. Pearl, Probabilistic Reasoning

in Intelligent Systems: Networks ofPlausible

Inference, second ed. Morgan Kaufmann

Publishers, 1988.

