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Abstract: 

 This paper describes an effective way to capture network traffic in high speed networks 

and analyze the captured traffic using data mining techniques. We address the problems in 

storing and processing large amount of data in this paper. After having provided the current state 

of the art in significantly reducing the amount of data stored we describe our approach, which 

consists of two strictly related parts. It defines a format to represent captured packets that (i) 

limits the amount of data stored and (ii) enables efficient processing. Data mining techniques 

widely studied and deployed for extracting relevant information from extremely large data bases 

are applied to our problem. A prototypal implementation of the proposed approach has been 

integrated into the Analyzer traffic capturing and analysis tool. It discusses the benefits and 

limitations expected from the deployment of the proposed approach, especially for what 

concerns the extraction of relevant information, which is still under evaluation. 

 

 

INTRODUCTION: 
The most critical issue in keeping a 

widespread network under our control is 

capturing and analyzing its traffic. The 

complexity of the task increases as the 

network becomes faster and faster. Traffic 

capturing and analysis goes through the 

steps depicted in the following figure-Figure 

1, all of which are critical when operating at 

high data rates. 

 

Figure 1 - Basic steps in network 

traffic capture and analysis 

 

Some equipment vendors, such as 

Endace offer network interfaces specifically 

designed for supporting packet capture at 

high data rates (e.g., 10 Gbps), thereby 

facilitating the realization of the first step in 

Figure 1.The time required to receive a 

minimum size Ethernet frame at 10 Gbps 

speed is less than 70 ns, which leaves a few 

hundred clock cycles to a multi-GHz 

processor for handling a captured packet. 

This makes the realization of the second step 

critical. However, the deployment of multi-

processor machines that concurrently 

process multiple packets increases the time 

available for handling each packet. 

While ad-hoc solutions based on 

advanced hardware can mitigate the 

problems related to the first two steps in 

Figure 1, no straightforward solution exists 

to reduce the criticalities of the next steps 
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and we need to face the below two 

problems: The infrastructure needed to store 

such amount of data is sophisticated and 

costly  

Locating relevant information within the 

saved data is computationally intense and 

time consuming.  

 

 

Existing Methods to reduce the 

amount of stored information: 
Two methods are known in literature 

to reduce the amount of information about 

network traffic to be stored before further 

processing. 
Packet Sampling  

 We’ll be capturing only a subset of 

the packets, e.g. one out of N. Although 

several studies demonstrate that statistical 

properties can be inferred from sampled 

traffic without any noticeable loss of 

information, this approach is not effective 

when all packets must be analyzed. One 

example is the detection of network attacks 

that are usually based on a small number of 

packets exploiting a security bug (e.g. ping 

of death) 

 

Flow Extraction 

The second method is based on the 

fact that each packet can be associated to a 

flow (e.g. a TCP connection). A flow can be 

defined as the set of packets that share the 

value of some fields in their headers (e.g. IP 

source and destination addresses, TCP 

source and destination ports, etc.), which 

can be seen as the signature of the flow. 

Flow-based techniques use this signature as 

elementary unit for storing traffic 

information: the network administrator is no 

longer able to see complete packets, but this 

might not be necessary for most 

applications. However, this approach cannot 

be used in case the payload should be 

available for inspection, e.g. in case of 

applications that detect network attacks 

based on some data in the packet payload 

(e.g. a malformed URL). 

 

SFlow Technology: 

The SFlow technology is a mixture 

between packet sampling and flow 

extraction. Packet sampling is deployed to 

achieve scalability and either sampled 

packets or the flow information related to it 

can be exported. This approach makes this 

technology suitable for a large set of 

environments because it allows both packet 

analysis (although limited to the first few 

hundred bytes of the packet) and flow 

analysis. The most important limitation is 

the lack of support from some of the key 

equipement vendors.  

A common problem among the 

presented technologies is the impossibility 

to customize the set of fields being stored 

for each flow, which is one of the key 

advantages of the approach presented in this 

paper. Other solutions, such as standards 

like RMON (the IETF’s remote network 

monitoring system) or applications like ntop, 

provide another way to measure network 

traffic. However, while they allow a network 

manager to determine traffic levels in 

network segments, total traffic loads to/from 

busy hosts, etc., they do not provide any 

flow measurement capability. 

 

DATA COLLECTION AND STORAGE: 

Saving to disk each captured packet 

or possibly just a snapshot of it may be 

feasible in some cases, but it anyway 

requires a significant amount of resources. 

Therefore, such approach cannot be 

considered as the basis of generic traffic 

monitoring procedures. In any case, single 

packets are not necessarily relevant for 

many types of traffic analysis whose focus is 

on packet flows.  Our approach is based on 

flow-based processing: a probe collecting 
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data saves a given set of information related 

to each flow, rather than dumping to disk 

(part of) the content of each packet.  As 

mentioned earlier, a flow is a set of packets 

that have the same values in a given set of 

fields; in our approach they are not 

necessarily IP source/destination address, 

source/destination port, and protocol type — 

widely used as transport flow identifiers in 

TCP/IP networks. Our flow definition 

mechanism is more general and several 

fields can be included in the set that best 

characterizes each flow. For instance, if the 

administrator is interested in the analysis of 

differentiated services traffic, the value of 

the DS field can be saved for each flow. 

Alternatively, if the administrator is 

interested only in the accounting based on 

the IP source Address, this can be the only 

parameter identifying a flow. Due to the 

flexible architecture of the underlying 

dumping mechanism, the addition of a new 

field in the definition of flows does not 

preclude the possibility of extracting 

statistics on previously stored data that do 

not have such information. Our approach 

also supports netmasks (e.g. network 

130.192.0.0/16). The problem of using such 

a coarse flow definition is that there is no 

way to disaggregate data. For example, the 

amount of traffic sent by each host cannot be 

known. The most relevant novelty of our 

approach is that the fields that are saved for 

each flow are completely customizable. For 

instance, the fields that are extracted by 

default in the current prototypal 

implementation of our solution are listed in 

Table 1; however, any field present in any 

protocol header can be extracted. The flow 

identification process does not require all 

these fields to be present at the same time: 

for example, ARP related fields are not 

present when analyzing IPv6 flows. 

 
Table 1. Default list of fields extracted for 

each flow. 

 

For each packet the probe determines 

the flow the packet belongs to and updates a 

set of counters (e.g. number of 

bytes/packets, timestamps, etc.). The 

selected fields are extracted for each flow 

and periodically dumped to disk together 

with the value of the above counters.  

 In order to support a variable 

number of fields within each flow, data is 

organized in three tables: 

1.  A transaction table keeps invariant 

information related to each flow; 

2.  An element table holds, for each flow, 

the list of fields to be stored; 

3. The Field Type table lists all valid fields. 

 

 
                     Figure 2. Structure of the 

database that stores network flows. 

 

Figure 3 shows a sample table. Although 

this structure is slightly more complex than 
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the traditional one (one table with a fixed 

number of fields, and one record per flow), 

it has proved much more flexible. 

 
 

Figure 3. Snapshot of records stored in 

the database 
SQLite was selected as a database 

engine since, as shown by Table 2, it 

provides very fast access and its overhead is 

only 5 times the time required to store data 

on a flat file (see Table 3). Since this engine 

cannot be configured as a standalone 

database server, scalability might become a 

problem because of the impossibility to split 

the load between the network probe and the 

database server. In order to optimize record 

insertion time, the flow export process 

dumps data on disk in a flat file and 

subsequently data are imported in the 

database through a bulk insertion. This also 

offers the flexibility to use a different 

database engine if needed, at the expense of 

disk space and speed. 

 

Database Type Record/sec written on disk 

 

 
 

Table 2. Number of records per seconds 

written on disk. Obviously, as shown in 

Table 3, increasing the duration of the 

flushing interval, further increases (even 

though mildly) the disk-saving factor. 

However, according to the figures shown in 

Table 3, a flushing interval larger than two 

minutes is not advisable since the database 

reduction is not significant while a longer 

sampling period makes computing traffic 

statistics harder. 

 

 
 

Table 3. Disk space saving with different 

archive formats and sampling intervals. 

 

IV.MINING RELEVANT 

INFORMATION 

A set of standard statistics (e.g. the 

protocol distribution, the amount of traffic 

sent by every host, etc.) can be easily 

obtained from the data stored as described 

above. However, even though the proposed 

approach results in significantly less 

information than a raw packet dump would 

produce, locating added-value information 

(e.g., locating an ongoing security attack) 

might be extremely cumbersome, if at all 

possible, for the network administrator. We 

have been experimenting the application of 

data mining techniques to large databases 

structured as described in the previous 

section, wherein each sample of a flow is 

represented by a record. An Item set is a set 

of elements – (record field, value) pairs in 

the database – characterized by a given 

value in one or more fields (e.g., IP source 

address and TCP source port). An Item set is 

considered Frequent if its cardinality 

exceeds a given threshold with respect to the 

total number of samples.For example, the set 

{host_dest=X, port_dest=Y} is a Frequent 

Itemset if there are more than Z% (e.g. 5%) 

samples in the database containing the set. 
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Association Rules are extracted from 

frequent itemsets and show correlations 

among (contained) itemsets. For instance, if 

a host S is active mostly as a web server, the 

association rule: IP dest_address = S → TCP 

dest_port = 80shows that there is a high 

probability that the flows destined to the 

server (characterized by the value S in the IP 

destination address field) contain 80 (the 

default TCP port for a webserver) in the 

TCP destination port field. 

 

Data mining techniques are not 

widely used for network operation and 

management. Most research is related to 

intrusion detection systems (IDS). Lee, in 

[14] proposes IDS built combining various 

data mining techniques, thus reducing the 

need to manually analyze and encode 

intrusion patterns.  

A method has been proposed to build 

an IDS based on clustering and anomaly 

detection. This method aims at dividing 

network traffic into clusters and then 

separate clusters containing normal traffic 

from clusters that represents intrusions, 

without requiring a “normal data set” to 

train the system. However, the assumptions 

on which the method is based are not 

realistic, thus making it of limited use in 

practice. The most important problem of 

IDS based on datamining techniques is the 

false positive rate, which may well be 

around 1%. For instance, a false positive 

rate of 1% with the assumption of 1 

intrusion every 10,000 normal transactions, 

results in a false alarm ratio above 99%, 

which makes these methods unusable 

without additional techniques for false alarm 

reduction. 

We believe that data mining 

techniques can be deployed much more 

effectively in other fields where the false 

positives are not an issue. In the work 

presented in this paper the output of the data 

mining process is used to create a snapshot 

of the network: which hosts act as servers, 

which ones are clients, which ones are 

routers, and so on. The network 

administrator can use the snapshot produced 

by the NetMiner module to check if hosts 

behave as expected; in addition, NetMiner 

can highlight changes in the network by 

comparing in snapshots taken at different 

times. 

 

CONCLUSION: 

     

While the data collection and storage 

approach can be considered stable, the data 

mining approach still need a more detailed 

evaluation and field trial. Also it is 

important for network administrators to be 

able to locate and monitor the traffic 

generated by these applications that are 

usually installed and controlled directly by 

network users.  

On the down side, our experience 

with the approach shows that the 

interpretation of results of the data mining 

process is far from being straightforward. 

This is mainly due to the large amount of 

information returned by data mining 

techniques that the network administrator is 

required to go through. For example, it is not 

uncommon that hundreds of thousands 

association rules be identified on a traffic 

trace. The problem of sifting through them is 

emphasized by the fact that the network 

administrator is not — and should not 

become — a data mining expert. Thus, our 

work on the NetMiner module has focused 

on providing a user interface that, being 

designed specifically for network analysis 

applications, facilitates the network 

administrator in browsing through the 

results provided by the data mining process. 

More work is being done to improve this 

aspect of the tool. More investigation and 

new results are expected on an important by-
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product of the proposed approach: using the 

outcome of the data mining process as an 

extremely compact representation of 

captured network traffic.    
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