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Abstract 

In this paper, we define some basic concepts of bipolar fuzzy graphs.  Some 

basic properties have been presented.  
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In 1994, Zhang initiated the concept of bipolar fuzzy sets as a generalization 

of fuzzy sets.  Bipolar fuzzy sets are an extension of fuzzy sets whose range of 

membership degree is [-1, 1].  In bipolar fuzzy set, membership degree 0 of an 

element means that the element is irrelevant to the corresponding property, the 

membership degree [0,1] of an element indicates that the element somewhat satisfies 

the property, and the membership degree [-1,0] of an element indicates the element 

somewhat satisfies the implicit counter property. 

 

Let X be nonempty set.  A bipolar fuzzy set B on X is an object having the 

form B={(x,μ
+

(x), μ
-

(x))|x X}, where μ
+
: X→[0,1] and μ

-
:X →[-1,0] are 

mappings.   

If μ
+
(x) ≠ 0 and μ

-
(x) = 0, it is the situation that x is regarded as having only 

positive satisfaction for B. If μ
+
(x) = 0 and μ

-
(x) ≠ 0, it is the situation that x does not 

satisfy the property of B but somewhat satisfies the counter property of B.  It is 

possible for an element x to be such that μ
+
(x) ≠ 0 and μ

-
(x) ≠ 0 when membership 

function of the property overlaps that of its counter property over some portion of X.  

For the sake of simplicity, we shall use the symbol B = (μ
+
, μ

-
) for the bipolar fuzzy 

set B = {(x, μ
+

(x), μ
-
(x))|xX}. 

Height [8] of a bipolar fuzzy set B = {(x, μ
+
(x), μ

-
(x))|xX} of a nonempty set X is 

denoted by h(B) and defined as h(B) = max{ μ
+
(x)| xX}.  Depth [8] of a bipolar 

fuzzy set B of a nonempty set X is denoted by d(B) and defined as d(B) = min{ μ
-

(x)|xX}.  Let = B1{(x, μ
+

1(x), μ
-
1 (x))|xX} and B2{(x, μ

+
2(x), μ

-
2(x))|xX} be two 

bipolar fuzzy sets in X . 21 BB   if μ
+

1(x) ≤ μ
-
2(x)  for all Xx and μ

-
1(x) ≥ μ

-
2(x) for 

all Xx . The support [8] of B is denoted by supp(B) and defined by supp(B) = 
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{x|μ
+
(x) ≠ 0 or μ

-
(x) ≠ 0}.  The upper core [8] of B is denoted by  Bc  and defined by 

    1|  xxBc  .  Similarly, the lower core [8] of B is denoted by  Bc  and defined 

by     1|  xxBc  .  Let ]1,0(1 t , ]0,1(2 t and B = (μ
+
, μ

-
) be a bipolar fuzzy 

set. {t1, t2} cut level set [8] of B to be the crisp set 

      21|sup1

2
txandtxBpxB t

t   
.  

For every two bipolar fuzzy sets A = (μA
+
, μA

-
) and B = (μB

+
, μB

-
) on X,  

            xxxxxBA BABA

  ,max,,(min .  

            xxxxxBA BABA

  ,min,,(max . 

Definition 2 : A bipolar fuzzy graph H = (X, ξ) is simple if ξ has no repeated bipolar 

fuzzy edges and whenever A, Bξ and AB, then A = B. 

Definition 3 : A bipolar fuzzy graph H = (X, ξ) is support simple if whenever A, Bξ 

and AB and supp(A) = supp(B), then A = B. 

Definition 4 Let H1 = (X1, ξ1) and H1 = (X2, ξ2) be two bipolar fuzzy graphs.  H1 is 

called partial bipolar fuzzy graph of H2 if ξ1ξ2. 

Example 2 Let = {x1, x2, x3, x4, x5} be a finite set and = {B1, B2, B3, B4} be the 

bipolar fuzzy set on subsets of X.  Here B1={(x1,0.4,-0.3), (x2,0.6,-0.2), (x3,0.7,-0.4)}, 

B2={(x3,0.6,-0.5), (x4,0.4,-0.7)}, B3={(x3,0.9,-0.6), (x5,0.4,-0.2)}, B4={(x4,0.8,-0.7), 

(x5,0.4,-0.1)}.  The graph (X, ξ) is a simple and support simple bipolar fuzzy graph 

shown in Figure 2. 

 

Figure 2: Example of simple and support simple bipolar fuzzy graph. 

Definition 5 : Let X = {x1, x2,…, xn} be a non empty finite set and B={B1,B2,…, Bk} 

be bipolar sets of subsets of X.  (α, β) - cut of bipolar fuzzy graph, H = (X, B), 

denoted by H(α,β) is an ordered pair H(α,β) = (X(α,β), ξ(α,β))where: 

(1)  X(α,β) = X 
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(2) ξ(α,β)={Bj,(α,β)| Bj,(α,β)={xiBj|μ
+
(xi)≥α, μ

-
(xi)≤β}, i = 1,2,…,n, j=1,2,…,k} 

(3) Bk+1(α,β) = {xiBj, i=1,2,…n, j = 1,2,…,k} 

(α, β) - cut of bipolar fuzzy graph is a crisp graph. 

Definition 6 Let H = (X, ξ) be a bipolar fuzzy graph, and for 

0 < α ≤ h(H), d(H) ≤ β < 0, let h(α,β) – (X(α,β), ξ(α,β))-level hypergraph of H.  The 

sequence of real numbers {sk, sk-1,…,s1,r1,r2,…,rn} such that 

d(H) = sk < sk-1< … ≤ s1 < 0 < r1 < r2 < … < rn = h(H) which satisfies the following 

properties 

(1) If  si+1 ≤ l < s1, r1 < k ≤ ri+1, then    11 ,, 


ii srlk BB ,  

(2)     ii srlk BB ,, ̂ , 

For a graph H, let fundamental sequence be F(H) = {sk, sk-1,…,s1,r1,r2,…,rn}where k ≤ 

n be two positive integers.  The core set of H is denoted by C(H) and defined by 

        
kk srsrsr HHHHC ,,, ,...,,

2211
 .  

We now define dual bipolar fuzzy graph as follows. 

Definition 7 Let H = (X, B) be a bipolar fuzzy graph where X = {x1, x2,…,xn}be a 

finite set and B = {B1, B2,…,Bn} be a bipolar fuzzy sets on subsets of X.  The bipolar 

fuzzy graph  XBH ,  is called dual bipolar fuzzy graph of H if 

(1)   nbbbB ,..., 21  is set of vertices of H  corresponding to B1, B2,…,Bn 

respectively. 

(2)   nxxxX ,..., 21  where 

             ijjiijjijjjjjj xbxbbbbx    ,|,,  

Definition 8 A bipolar fuzzy set B = (μ
+
, μ

-
 ) is called elementary bipolar fuzzy set if 

μ
+
 : X → [0,1], μ

-
 : X → [0,1] are constant functions. 

Definition 9 A bipolar fuzzy graph is called elementary bipolar fuzzy graph if all 

bipolar fuzzy edges are elementary. 

Definition 10 Let H = (X, ξ) be a bipolar fuzzy graph and 

        
kk srsrsr HHHHC ,,, ,...,,

2211
 .  H is said to be ordered if C(H) is ordered. The 

bipolar fuzzy graph is simply ordered if C(H) is simply ordered. 

Definition 11 A bipolar fuzzy graph H = (X, ξ) is called {m
+
, m

-
} tempered bipolar 

fuzzy graph of a crisp graph H
*
 = (X, E) if there exists a bipolar fuzzy set B = (m

+
,m

-
) 

such that   EEiEE ii
  |,  where  
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 
  



 






otherwiseif

ExifEeem
x ii

Ei ,0

|min
  

And 

   
  



 






otherwiseif

ExifEeem
x ii

Ei ,0

|max
  

Theorem 1 A bipolar fuzzy graph H = (X, ξ) is a {m
+
, m

-
} tempered bipolar fuzzy 

graph of some crisp graph H
*
 then H is elementary, support simple and simply 

ordered. 

Proof. Let H = (X, ξ) is a {m
+
, m

-
} tempered bipolar fuzzy graph of some crisp graph 

H
*
.  As it is {m

+
, m

-
} tempered, the positive membership values and negative 

membership values of bipolar fuzzy edges of H are constant.  Hence it is elementary. 

Clearly if support of two bipolar fuzzy edges of the {m
+
, m

-
} tempered bipolar fuzzy 

graph are equal then the bipolar fuzzy edges are equal. Hence it support simple.  Let 

        
kk srsrsr HHHHC ,,, ,...,,

2211
  since H is elementary, it is ordered.  Now we are to 

show that it is simple. Let    iiii srsr HHE ,, \
11 

  then there exists Ex *  such that 

μ
+
(x

*
) = ri+1 and μ

-
(x

*
) = si+1.  Since ri+1 < ri, si+1 > si, it follows that  ii srXx ,

*   and 

 ii srXE , .  Hence H is simply ordered. 

Bipolar fuzzy transversal of bipolar fuzzy graphs is defined below. 

Definition 12 Let H = (X,ξ) be a bipolar fuzzy graph. A bipolar fuzzy transversal T = 

(τ
+
, τ

-
) of H is a bipolar fuzzy set defined on X with the property that  

           BdBhBdBh BT ,, for each B .  A minimal bipolar fuzzy transversal T for H 

is a bipolar fuzzy transversal of H with the property that if TT 1 , then T1 is not a 

bipolar fuzzy transversal of H.   

We denote set of minimal bipolar fuzzy transversal as Tr(H).  From the 

definition, it can be verified that Tr(H) ≠ ø.  

1.8  Definition : Let G be an M-graph and A be M-fuzzy subgraph of G. 

Let Im (μA) = {αi : μA(x) = αi for every xG} and Im (νA) = {βi : μA(x) = βi for every 

xG}.  Then {A<αi,βi>} are the only level M-subgraph of A. 

3.2 Theorem 

Any M-sub-bipolar H of an M-bipolar G can be realized as a bi-level M-sub-bipolar 

of M-fuzzy sub-bipolar of G. 

Proof 
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Let G = (G1G2, +, •) be an M-bipolar. 

Let H = (H1H2, +, •) be an M-sub-bipolar of G. 

Define μA1 : H1 → [0,1] and νA1 : H1 → [0,1] by 

 









1

1

1
0 Hxfor

Hxfor
xA


     










defineandHxfor

Hxfor
xvA

,

0

1

1

1


 

μA2 : H2 → [0 ,1] and νA2 : H2 → [0 ,1] by 

 









2

2

2
0 Hxfor

Hxfor
xA


    










2

2

2

0

Hxfor

Hxfor
xvA


 

 

where α[0, min {μA1(e1), μA2(e2)}] and β  [max {νA1 (e1), νA2(e2)}, 1]. 

Let x, yG. 

Suppose x, yH, then 

i.  x, y  H1  x + yH1 

μA1 (x + y) = α, μA1 (x) = α, μA1 (y) = α and 

νA1 (x + y) = 0, νA1 (x) = 0, νA1 (y) = 0 then 

μA1 (x +y) ≥ min {μA1 (x), μA1 (y)} 

νA1 (x + y) ≤ max {νA1 (x), νA1 (y)}. 

ii.  x, y   H2   xy   H2 

μA2 ( xy ) = α, μA2 ( x ) = α, μA2 ( y ) = α and 

νA2 (xy) = 0, νA2 (x) = 0, νA2 (y) = 0 then 

μA2 (xy) ≥ min {μA2 (x), μA2 (y)} 

νA2 (xy) ≤ max {νA2 (x), νA2 (y)}. 

iii.  x   H1 and y   H1   x + y   H1 

μA1 (x + y) = 0, μA1 (x) = α, μA1 (y) = 0 and 

νA1 (x + y) = β, νA1 (x) = 0, νA1 (y) = β then 

μA1 (x +y) ≥ min {μA1 (x), μA1 (y)} 

νA1 (x + y) ≤ max {νA1 (x), νA1 (y)}. 

iv.  x   H2 and y   H2   x y   H2 

μA2 (xy) = 0, μA2 (x) = α, μA2 (y) = 0 and 

νA2 (xy) = β, νA2 (x) = 0, νA2 (y) = β then 

μA2 (xy) ≥ min {μA2 (x), μA2 (y)} 

νA2 (xy) ≤ max {νA2(x), νA2 (y)}. 

Suppose x, y H, then 

i.  x , y   H1, then x + y   H1 or x + y   H1 
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μA1 (x + y) = α or 0, μA1 (x) = 0, μA1 (y) = 0 and 

νA1 (x + y) = 0 or β, νA1 (x) = β, νA1(y) = β, then 

μA1 (x +y) ≥ min {μA1 (x), μA1 (y)} 

νA1 (x + y) ≤ max {νA1(x), νA1 (y)}. 

ii.  x, y H2   xy   H2 or xy H2 

μA2 (xy) = α or 0, μA2 (x) = 0, μA2 (y) = 0 and 

νA2 (xy) = 0 or β, νA2 (x) = β, νA2 (y) = β, then 

μA2 (xy) ≥ min {μA2 (x), μA2 (y)} 

νA2 (xy) ≤ max {νA2 (x), νA2 (y)}. 

Thus in all cases, 

(A1, +) is of G1 and (A2, •) is of G2. 

Clearly A = (A1   A2, +, •) is fuzzy sub-bipolar of G, 

Now, we have to prove that A is M-fuzzy sub-bigraph of G. 

Suppose, mM and x H1, then m + x H1. 

Then, μA1 (m + x) = α, μA1 (x) = α, and 

νA1 (m + x) = 0, νA1 (x) = 0, then 

μA1 (m + x) ≥ μA1 (x), 

νA1 (m + x) ≤ νA1 (x). 

Suppose, mM and xH1, then m + x   H1 or m + xH1. 

Then, μA1 (m + x) = α or 0, μA1 (x) = 0, and 

νA1 (m + x) = 0 or β, νA1 (x) = β, then 

μA1 (m + x) ≥ μA1 (x), 

νA1 (m + x) ≤ νA1 (x). 

Clearly (A1, +) is M-fuzzy sub-bipolar of G1. 

Suppose, mM and x H2, then m + x H2. 

Then, μA2 (mx) = α, μA2 (x) = α, and 

νA2 (mx) = 0, νA2 (x) = 0, then 

μA2 (mx) ≥ μA2 (x), 

νA2 (mx) ≤ νA2 (x). 

Suppose, mM and x   H2, then m + xH2 or m + xH2. 

Then, μA2 (mx) = α or 0, μA2 (x) = 0, and 

νA2 (mx) = 0 or β, νA2 (x) = β, then 

μA2 (mx) ≥ μA2 (x), 
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νA2 (mx) ≤ νA2 (x). 

Clearly (A2, •) is an intuitionistic M-fuzzy sub-bipolar of G2. 

Clearly A = (A1A2, +, •) is M-fuzzy sub-bipolar of G, where 

μA : G → [0,1] and νA : G → [0,1] are given by 

 









Hxfor

Hxfor
xA

0


      










Hxfor

Hxfor
xvA



0
  

For this M-fuzzy sub-bipolar, A<α,β> = A1<α,β> A2<α,β> = H. 

3.3 Theorem 

Let G be an M-bipolar and A be M-fuzzy sub-bipolar of G.  Two bilevel M-sub-

bipolar A<α,β>, A<γ,δ> with α < γ and δ < β of A are equal iff there is no x G such that 

α ≤ μA (x) < γ and δ < νA(x) ≤ β. 

Theorem 1 Let G be a bipolar fuzzy graph where induced crisp graph G΄ is an even 

cycle.  Then G is bipolar fuzzy graph if and only if either m2
+
 and m2

-
 and are constant 

functions or alternate edges have same positive membership values and negative 

membership values.  

Proof. Let G = (A, B) be a regular bipolar fuzzy graph where A = (m
+

1, m
-
1) and A = 

(B
+

2, m
-
2) be two bipolar fuzzy sets on a non-empty finite set V and EV×V 

respectively and underlying crisp graph G′  of G be an even cycle. If either m
+

2, m
-
2 

are constant functions or alternate edges have same positive and negative membership 

values, then G is a bipolar fuzzy graph. Conversely, suppose G is a (k1, k2) bipolar 

fuzzy graph.  Let n e1, e2,…, en be the edges of G′ in order.  As in the theorem 3, 

 







evenisiifck

oddisiifc
em i

,

,,

11

1

2  

  







evenisiifck

oddisiifc
em i

,

,,

22

2

2  

If c1 = k1 – c1, then m
+

2 is constant.  If c1 ≠ k1 – c1, then alternate edges have same 

positive and negative membership values. Similarly for m
−

2.  Hence the results.  

Theorem 2 The size of a (k1, k2) bipolar fuzzy graph is 








2
,

2

21 pkpk
 where p =|V|. 

Proof. Let G = (A, B) be a bipolar fuzzy graph where A = (m
+

1, m
−

1) and (m
+

2, m
−

2) 

be two bipolar fuzzy sets on a non-empty finite set V and EV×V respectively.  The 

size of G is      







 







 vumvumGS
vuvu

,,, 22 .  We have 
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 
 

 
 

   GSvumvumvd
EvuEvuVv

2,,,2 2

,

2

,









 







 .  So    vdGS
Vv




2 . i.e. 

  







 



21,2 kkGS
VvVv

.  

This gives 2S(G) = (pk1, pk2).  Hence the result.  

Theorem 3 If G is (k, k′) bipolar fuzzy graph, then 

2S(G) +O(G) = ( pk, pk′) where p =|V|. 

Proof. Let G=(A,B) be a bipolar fuzzy graph where A = (m
+

1, m
-
1) and B = (m

+
2, m

-
2) 

be two bipolar fuzzy sets on a non-empty finite set V and V ×V respectively. Since G 

is a (k, k′) -totally regular fuzzy graph. So k = td
+
(v) = d

+
(v) + m

+
1(v) and k΄ = td

-
(v) = 

d
-
(v) + m

-
1(v) for all vV.  Therefore    vmvdk

VvVvVv









  1  and  

   vmvdk
VvVvVv









  1' .  pk = 2S
+
(G) and pk = 2S

-
(G).  So pk + pk΄ = 2(S

+
(G) 

+ S
-
(G)) + O

+
(G) + O

-
(G).  Hence 2S(G) + O(G) = (pk, pk΄).   
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