BIPOLAR FUZZY GRAPHS D.Venugopalam¹ , Naga Maruthi Kumari² , M. Vijaya Kumar³ Govt. Pingle College, Waddepalli, Hanamkonda. ATRIA Institute of Technology, Ananad Nagar, Bangalore. Bhopal.

Abstract

In this paper, we define some basic concepts of bipolar fuzzy graphs. Some basic properties have been presented.

Key Words : Bipolar, fuzzy graphs, fuzzy graph cut level fuzzy graphs.

In 1994, Zhang initiated the concept of bipolar fuzzy sets as a generalization of fuzzy sets. Bipolar fuzzy sets are an extension of fuzzy sets whose range of membership degree is [-1, 1]. In bipolar fuzzy set, membership degree 0 of an element means that the element is irrelevant to the corresponding property, the membership degree [0,1] of an element indicates that the element somewhat satisfies the property, and the membership degree $[-1,0]$ of an element indicates the element somewhat satisfies the implicit counter property.

Let X be nonempty set. A bipolar fuzzy set B on X is an object having the form $B = \{(x, \mu^+ \square \square (x), \mu^- \square (x)) | x \in \square X\}$, where μ^+ : $X \rightarrow [0,1]$ and μ^- : $X \rightarrow [-1,0]$ are mappings.

If $\mu^+(x) \neq 0$ and $\mu^-(x) = 0$, it is the situation that x is regarded as having only positive satisfaction for B. If $\mu^+(x) = 0$ and $\mu^-(x) \neq 0$, it is the situation that x does not satisfy the property of B but somewhat satisfies the counter property of B. It is possible for an element x to be such that $\mu^+(x) \neq 0$ and $\mu^-(x) \neq 0$ when membership function of the property overlaps that of its counter property over some portion of X. For the sake of simplicity, we shall use the symbol $B = (\mu^+, \mu^-)$ for the bipolar fuzzy set B = { $(x, \mu^+ \Box \Box(x), \mu^-(x)) | x \in X$ }.

Height [8] of a bipolar fuzzy set $B = \{(x, \mu^+(x), \mu^-(x)) | x \in X\}$ of a nonempty set X is denoted by h(B) and defined as h(B) = max{ $\mu^+(x)$ $x \in X$ }. Depth [8] of a bipolar fuzzy set B of a nonempty set X is denoted by $d(B)$ and defined as $d(B) = min\{ \mu^{-1} \}$ $(x)|x \in X$. Let = B₁{ $(x, \mu^+(x), \mu^-(x))|x \in X$ } and B₂{ $(x, \mu^+(x), \mu^-(x))|x \in X$ } be two bipolar fuzzy sets in X . $B_1 \subseteq B_2$ if $\mu^+(x) \le \mu^-(x)$ for all $x \in X$ and $\mu^-(x) \ge \mu^-(x)$ for all $x \in X$. The support [8] of B is denoted by supp(B) and defined by supp(B) =

 ${x|\mu^+(x) \neq 0 \text{ or } \mu^-(x) \neq 0}$. The upper core [8] of B is denoted by $\overline{c}(B)$ and defined by $\langle c(B) \rangle x \mid \mu^{-1}(x) = 1$. Similarly, the lower core [8] of B is denoted by $c(B)$ and defined by $\underline{c}(B)$ $\{x \mid \mu^-(x) = -1\}$. Let $t_1 \in (0,1]$, $t_2 \in (-1,0]$ and $B = (\mu^+, \mu^-)$ be a bipolar fuzzy set. $\{t_1, t_2\}$ cut level set $[8]$ of B to be the crisp set $B_{t_2}^{t_1} \{x \in \text{sup } p(B) | \mu^+(x) \ge t_1 \text{ and } \mu^-(x) \le t_2 \}$.

For every two bipolar fuzzy sets
$$
A = (\mu_A^+, \mu_A^-)
$$
 and $B = (\mu_B^+, \mu_B^-)$ on X,
\n $(A \cap B)(x) = (\min(\mu_A^+(x), \mu_B^+(x)) \max(\mu_A^-(x), \mu_B^-(x)))$
\n $(A \cup B)(x) = (\max(\mu_A^+(x), \mu_B^+(x)) \min(\mu_A^-(x), \mu_B^-(x)))$

Definition 2 : A bipolar fuzzy graph $H = (X, \xi)$ is simple if ξ has no repeated bipolar fuzzy edges and whenever A, $B \in \xi$ and $A \subseteq B$, then $A = B$.

Definition 3 : A bipolar fuzzy graph $H = (X, \xi)$ is support simple if whenever A, $B \in \xi$ and $A \subseteq B$ and supp $(A) = supp(B)$, then $A = B$.

Definition 4 Let $H_1 = (X_1, \xi_1)$ and $H_1 = (X_2, \xi_2)$ be two bipolar fuzzy graphs. H_1 is called partial bipolar fuzzy graph of H₂ if $\xi_1 \subseteq \xi_2$.

Example 2 Let = $\{x_1, x_2, x_3, x_4, x_5\}$ be a finite set and = $\{B_1, B_2, B_3, B_4\}$ be the bipolar fuzzy set on subsets of X. Here $B_1 = \{(x_1, 0.4, -0.3), (x_2, 0.6, -0.2), (x_3, 0.7, -0.4)\}\,$ $B_2 = \{(x_3, 0.6, -0.5), (x_4, 0.4, -0.7)\}, B_3 = \{(x_3, 0.9, -0.6), (x_5, 0.4, -0.2)\}, B_4 = \{(x_4, 0.8, -0.7), (x_5, 0.4, -0.2)\}$ $(x_5,0.4,-0.1)$. The graph (X, ξ) is a simple and support simple bipolar fuzzy graph shown in Figure 2.

Figure 2: Example of simple and support simple bipolar fuzzy graph.

Definition 5 : Let $X = \{x_1, x_2, ..., x_n\}$ be a non empty finite set and $B = \{B_1, B_2, ..., B_k\}$ be bipolar sets of subsets of X. (α, β) - cut of bipolar fuzzy graph, H = (X, B), denoted by $H_{(\alpha,\beta)}$ is an ordered pair $H_{(\alpha,\beta)} = (X_{(\alpha,\beta)}, \xi_{(\alpha,\beta)})$ where:

(1) $X_{(\alpha,\beta)} = X$

- (2) $\xi_{(\alpha,\beta)} = \{B_{j,(\alpha,\beta)} | B_{j,(\alpha,\beta)} = \{x_i \in B_j | \mu^+(x_i) \ge \alpha, \mu^-(x_i) \le \beta\}, i = 1,2,...,n, j = 1,2,...,k\}$
- (3) $B_{k+1(\alpha,\beta)} = \{x_i \notin B_j, i=1,2,...,n, j=1,2,...,k\}$

 (α, β) - cut of bipolar fuzzy graph is a crisp graph.

Definition 6 Let $H = (X, \xi)$ be a bipolar fuzzy graph, and for

 $0 \le \alpha \le h(H)$, $d(H) \le \beta \le 0$, let $h_{(\alpha,\beta)} - (X_{(\alpha,\beta)}, \xi_{(\alpha,\beta)})$ -level hypergraph of H. The sequence of real numbers $\{s_k, s_{k-1}, \ldots, s_1, r_1, r_2, \ldots, r_n\}$ such that

 $d(H) = s_k < s_{k-1} < ... \le s_1 < 0 < r_1 < r_2 < ... < r_n = h(H)$ which satisfies the following properties

(1) If
$$
s_{i+1} \leq l < s_1, r_1 < k \leq r_{i+1}
$$
, then $B_{(k,l)} = B_{(r_{i+1}, s_{i+1})}$,

(2)
$$
B_{(k,l)} = \hat{\phi} B_{(r_i, s_i)},
$$

For a graph H, let fundamental sequence be $F(H) = \{s_k, s_{k-1},...,s_1,r_1,r_2,...,r_n\}$ where $k \leq$ n be two positive integers. The core set of H is denoted by C(H) and defined by $C(H) = \{H_{(r_1,s_1)}, H_{(r_2,s_2)},..., H_{(r_k,s_k)}\}.$

We now define dual bipolar fuzzy graph as follows.

Definition 7 Let H = (X, B) be a bipolar fuzzy graph where $X = \{x_1, x_2, \ldots, x_n\}$ be a finite set and $B = \{B_1, B_2, \ldots, B_n\}$ be a bipolar fuzzy sets on subsets of X. The bipolar fuzzy graph $H = (B, X)$ is called dual bipolar fuzzy graph of H if

(1) $B = \{b_1, b_2, \dots, b_n\}$ is set of vertices of *H* corresponding to B₁, B₂,...,B_n respectively.

(2)
$$
\overline{X} = \{x_1, x_2, ... x_n\}
$$
 where
\n $\overline{x}_j = \{(b_j, \mu_j^+(b_j), \mu_j^-(b_j)) | \mu_i^+(b_j) = \mu_j^+(x_i), \mu_i^-(b_j) = \mu_j^-(x_i)\}$ where

Definition 8 A bipolar fuzzy set $B = (\mu^+, \mu^-)$ is called elementary bipolar fuzzy set if $\mu^*: X \to [0,1], \mu^*: X \to [0,1]$ are constant functions.

Definition 9 A bipolar fuzzy graph is called elementary bipolar fuzzy graph if all bipolar fuzzy edges are elementary.

Definition 10 Let $H = (X, \xi)$ be a bipolar fuzzy graph and

 $C(H) = \{H_{(r_1, s_1)}, H_{(r_2, s_2)},..., H_{(r_k, s_k)}\}$. H is said to be ordered if C(H) is ordered. The bipolar fuzzy graph is simply ordered if C(H) is simply ordered.

Definition 11 A bipolar fuzzy graph $H = (X, \xi)$ is called $\{m^+, m^-\}$ tempered bipolar fuzzy graph of a crisp graph $H^* = (X, E)$ if there exists a bipolar fuzzy set $B = (m^+, m^-)$ such that $\xi = \left\{ \left(\gamma_{E_i}^+, \gamma_{E_i}^- \right) \mid E_i \in E \right\}$ where

$$
\gamma_{E_i}^+(x) = \begin{cases} \min\{m^+(e) \mid e \in E_i\} & \text{if } x \in E_i \\ 0, & \text{if otherwise} \end{cases}
$$

And

$$
\gamma_{E_i}^-(x) = \begin{cases} \max\{m^-(e) \mid e \in E_i\} & \text{if } x \in E_i \\ 0, & \text{if otherwise} \end{cases}
$$

Theorem 1 A bipolar fuzzy graph $H = (X, \xi)$ is a $\{m^+, m^-\}$ tempered bipolar fuzzy graph of some crisp graph H^* then H is elementary, support simple and simply ordered.

Proof. Let $H = (X, \xi)$ is a $\{m^+, m^-\}$ tempered bipolar fuzzy graph of some crisp graph H^* . As it is $\{m^+$, m $\}$ tempered, the positive membership values and negative membership values of bipolar fuzzy edges of H are constant. Hence it is elementary. Clearly if support of two bipolar fuzzy edges of the ${m^+}, m$? tempered bipolar fuzzy graph are equal then the bipolar fuzzy edges are equal. Hence it support simple. Let $C(H) = \{H_{(r_1, s_1)}, H_{(r_2, s_2)},..., H_{(r_k, s_k)}\}$ since H is elementary, it is ordered. Now we are to show that it is simple. Let $E \in H_{(r_{i+1}, s_{i+1})} \setminus H_{(r_i, s_i)}$ then there exists $x^* \in E$ such that $\mu^+(x^*) = r_{i+1}$ and $\mu^-(x^*) = s_{i+1}$. Since $r_{i+1} < r_i$, $s_{i+1} > s_i$, it follows that $x^* \notin X_{(r_i, s_i)}$ * $\notin X_{(r,s)}$ and $E \not\subset X_{(r_i, s_i)}$. Hence H is simply ordered.

Bipolar fuzzy transversal of bipolar fuzzy graphs is defined below.

Definition 12 Let $H = (X, \xi)$ be a bipolar fuzzy graph. A bipolar fuzzy transversal T = (τ^*, τ) of H is a bipolar fuzzy set defined on X with the property that

 $T_{(h(B),d(B))} \cap B_{(h(B),d(B))} \neq \emptyset$ for each $B \in \xi$. A minimal bipolar fuzzy transversal T for H is a bipolar fuzzy transversal of H with the property that if $T_1 \subset T$, then T_1 is not a bipolar fuzzy transversal of H.

We denote set of minimal bipolar fuzzy transversal as Tr(H). From the definition, it can be verified that $Tr(H) \neq \emptyset$.

1.8 Definition : Let G be an M-graph and A be M-fuzzy subgraph of G.

Let Im $(\mu_A) = {\alpha_i : \mu_A(x) = \alpha_i \text{ for every } x \in G}$ and Im $(\nu A) = {\beta_i : \mu_A(x) = \beta_i \text{ for every}}$ $x \in G$. Then $\{A_{\leq \alpha i, \beta i>} \}$ are the only level M-subgraph of A.

3.2 Theorem

Any M-sub-bipolar H of an M-bipolar G can be realized as a bi-level M-sub-bipolar of M-fuzzy sub-bipolar of G.

Proof

Let
$$
G = (G_1 \in G_2, +, \cdot)
$$
 be an M-bipolar.
\nLet $H = (H_1 \in H_2, +, \cdot)$ be an M-sub-bipolar of G.
\nDefine $\mu_{A1} : H_1 \rightarrow [0,1]$ and $v_{A1} : H_1 \rightarrow [0,1]$ by
\n
$$
\mu_{A1}(x) = \begin{cases} \alpha & \text{for } x \in H_1 \\ 0 & \text{for } x \notin H_1 \end{cases} \qquad v_{A1}(x) = \begin{cases} 0 & \text{for } x \in H_1 \\ \beta & \text{for } x \notin H_1, \text{ and define} \end{cases}
$$
\n
$$
\mu_{A2} : H_2 \rightarrow [0,1] \text{ and } v_{A2} : H_2 \rightarrow [0,1] \text{ by}
$$
\n
$$
\mu_{A2}(x) = \begin{cases} \alpha & \text{for } x \in H_2 \\ 0 & \text{for } x \notin H_2 \end{cases} \qquad v_{A2}(x) = \begin{cases} 0 & \text{for } x \in H_2 \\ \beta & \text{for } x \notin H_2 \end{cases}
$$

where $\alpha \in [0, \min \{ \mu_{A1}(e_1), \mu_{A2}(e_2) \}]$ and $\beta \in [\max \{ v_{A1}(e_1), v_{A2}(e_2) \}, 1]$. Let $x, y \in G$.

Suppose $x, y \in H$, then

i.
\n
$$
x, y \in H_1 \Rightarrow x + y \in H_1
$$

\n $\mu_{A1} (x + y) = \alpha, \mu_{A1} (x) = \alpha, \mu_{A1} (y) = \alpha$ and
\n $v_{A1} (x + y) = 0, v_{A1} (x) = 0, v_{A1} (y) = 0$ then
\n $\mu_{A1} (x + y) \ge \min \{ \mu_{A1} (x), \mu_{A1} (y) \}$
\n $v_{A1} (x + y) \le \max \{ v_{A1} (x), v_{A1} (y) \}.$

ii.
\n
$$
x, y \in H_2 \implies xy \in H_2
$$

\n $\mu_{A2}(xy) = \alpha, \mu A2(x) = \alpha, \mu A2(y) = \alpha$ and
\n $v_{A2}(xy) = 0, v_{A2}(x) = 0, v_{A2}(y) = 0$ then
\n $\mu_{A2}(xy) \ge \min \{ \mu_{A2}(x), \mu_{A2}(y) \}$
\n $v_{A2}(xy) \le \max \{ v_{A2}(x), v_{A2}(y) \}.$

iii.
$$
x \in H_1
$$
 and $y \notin H_1 \Rightarrow x + y \notin H_1$
\n $\mu_{A1} (x + y) = 0, \mu_{A1} (x) = \alpha, \mu_{A1} (y) = 0$ and
\n $v_{A1} (x + y) = \beta, v_{A1} (x) = 0, v_{A1} (y) = \beta$ then
\n $\mu_{A1} (x + y) \ge \min \{ \mu_{A1} (x), \mu_{A1} (y) \}$
\n $v_{A1} (x + y) \le \max \{ v_{A1} (x), v_{A1} (y) \}.$

iv.
$$
x \in H_2
$$
 and $y \notin H_2 \implies x y \notin H_2$
\n $\mu_{A2}(xy) = 0, \mu_{A2}(x) = \alpha, \mu_{A2}(y) = 0$ and
\n $v_{A2}(xy) = \beta, v_{A2}(x) = 0, v_{A2}(y) = \beta$ then
\n $\mu_{A2}(xy) \ge \min \{ \mu_{A2}(x), \mu_{A2}(y) \}$
\n $v_{A2}(xy) \le \max \{ v_{A2}(x), v_{A2}(y) \}.$

Suppose x, $y \notin H$, then

i. $x, y \notin H_1$, then $x + y \in H_1$ or $x + y \notin H_1$

 μ_{A1} (x + y) = α or 0, μ_{A1} (x) = 0, μ_{A1} (y) = 0 and v_{A1} (x + y) = 0 or β , v_{A1} (x) = β , $v_{A1}(y) = \beta$, then μ_{A1} (x +y) \geq min { μ_{A1} (x), μ_{A1} (y)} v_{A1} (x + y) \leq max { v_{A1} (x), v_{A1} (y)}.

ii. $x, y \notin H_2 \implies xy \in H_2 \text{ or } xy \notin H_2$ μ_{A2} (xy) = α or 0, μ_{A2} (x) = 0, μ_{A2} (y) = 0 and v_{A2} (xy) = 0 or β , v_{A2} (x) = β , v_{A2} (y) = β , then μ_{A2} (xy) \geq min { μ_{A2} (x), μ_{A2} (y)} $v_{A2} (xy) \leq max \{v_{A2} (x), v_{A2} (y)\}.$

Thus in all cases,

 $(A_1, +)$ is of G_1 and (A_2, \cdot) is of G_2 .

Clearly $A = (A_1 \cup A_2, +, \cdot)$ is fuzzy sub-bipolar of G,

Now, we have to prove that A is M-fuzzy sub-bigraph of G.

Suppose, $m \in M$ and $x \in H_1$, then $m + x \in H_1$.

Then, μ_{A1} (m + x) = α , μ_{A1} (x) = α , and

$$
v_{A1}
$$
 (m + x) = 0, v_{A1} (x) = 0, then

$$
\mu_{A1}\left(m+x\right) \geq \mu_{A1}\left(x\right) ,
$$

$$
\nu_{A1}\left(m+x\right) \leq\nu_{A1}\left(x\right) .
$$

Suppose, $m \in M$ and $x \notin H_1$, then $m + x \in H_1$ or $m + x \notin H_1$.

Then, μ_{A1} (m + x) = α or 0, μ_{A1} (x) = 0, and

 v_{A1} (m + x) = 0 or β , v_{A1} (x) = β , then

 μ_{A1} (m + x) $\geq \mu_{A1}$ (x),

 v_{A1} (m + x) $\leq v_{A1}$ (x).

Clearly $(A_1, +)$ is M-fuzzy sub-bipolar of G_1 .

Suppose, $m \in M$ and $x \in H_2$, then $m + x \in H_2$.

Then, μ_{A2} (mx) = α , μ_{A2} (x) = α , and

$$
v_{A2}
$$
 (mx) = 0, v_{A2} (x) = 0, then

$$
\mu_{A2} (mx) \geq \mu_{A2} (x),
$$

 v_{A2} (mx) $\leq v_{A2}$ (x).

Suppose, $m \in M$ and $x \notin H_2$, then $m + x \in H_2$ or $m + x \notin H_2$.

Then, μ_{A2} (mx) = α or 0, μ_{A2} (x) = 0, and

$$
v_{A2}
$$
 (mx) = 0 or β , v_{A2} (x) = β , then

$$
\mu_{A2} (mx) \geq \mu_{A2} (x),
$$

 v_{A2} (mx) $\leq v_{A2}$ (x).

Clearly (A_2, \cdot) is an intuitionistic M-fuzzy sub-bipolar of G_2 . Clearly $A = (A_1 \cup A_2, +, \cdot)$ is M-fuzzy sub-bipolar of G, where μ_A : $G \rightarrow [0,1]$ and v_A : $G \rightarrow [0,1]$ are given by

$$
\mu_A(x) = \begin{cases} \alpha & \text{for } x \in H \\ 0 & \text{for } x \notin H \end{cases} \qquad \qquad v_A(x) = \begin{cases} 0 & \text{for } x \in H \\ \beta & \text{for } x \notin H \end{cases}
$$

For this M-fuzzy sub-bipolar, $A_{\langle\alpha,\beta\rangle} = A_{1\langle\alpha,\beta\rangle} \cup A_{2\langle\alpha,\beta\rangle} = H$.

3.3 Theorem

Let G be an M-bipolar and A be M-fuzzy sub-bipolar of G. Two bilevel M-subbipolar $A_{\leq \alpha,\beta}$, $A_{\leq \gamma,\delta}$ with $\alpha \leq \gamma$ and $\delta \leq \beta$ of A are equal iff there is no $x \in G$ such that $\alpha \leq \mu_A(x) < \gamma$ and $\delta < v_A(x) \leq \beta$.

Theorem 1 Let G be a bipolar fuzzy graph where induced crisp graph G' is an even cycle. Then G is bipolar fuzzy graph if and only if either m_2^+ and m_2^- and are constant functions or alternate edges have same positive membership values and negative membership values.

Proof. Let $G = (A, B)$ be a regular bipolar fuzzy graph where $A = (m⁺₁, m⁻₁)$ and $A =$ (B^{\dagger}_{2}, m_{2}) be two bipolar fuzzy sets on a non-empty finite set V and $E \subseteq V \times V$ respectively and underlying crisp graph G' of G be an even cycle. If either m^{\dagger}_{2} , m^{\dagger}_{2} are constant functions or alternate edges have same positive and negative membership values, then G is a bipolar fuzzy graph. Conversely, suppose G is a (k_1, k_2) bipolar fuzzy graph. Let $n e_1, e_2, \ldots, e_n$ be the edges of G' in order. As in the theorem 3,

$$
m_2^+(e_i) = \begin{cases} c_1, & \text{if } i \text{ is odd,} \\ k_1 - c_1, & \text{if } i \text{ is even} \end{cases}
$$

$$
m_2^-(e_i) = \begin{cases} c_2, & \text{if } i \text{ is odd,} \\ k_2 - c_2, & \text{if } i \text{ is even} \end{cases}
$$

If $c_1 = k_1 - c_1$, then m^{\dagger} is constant. If $c_1 \neq k_1 - c_1$, then alternate edges have same positive and negative membership values. Similarly for $m₂$. Hence the results.

Theorem 2 The size of a (k₁, k₂) bipolar fuzzy graph is $\left|\frac{P_{11}}{2}, \frac{P_{22}}{2}\right|$ J $\left(\frac{pk_1}{2}, \frac{pk_2}{2}\right)$ \setminus ſ 2 , 2 $\left(\frac{pk_1}{2}, \frac{pk_2}{2}\right)$ where p =|V|.

Proof. Let $G = (A, B)$ be a bipolar fuzzy graph where $A = (m⁺₁, m⁻₁)$ and $(m⁺₂, m⁻₂)$ be two bipolar fuzzy sets on a non-empty finite set V and $E \subseteq V \times V$ respectively. The

size of G is
$$
S(G) = \left(\sum_{u \neq v} m_2^+(u, v), \sum_{u \neq v} m_2^-(u, v)\right)
$$
. We have

$$
\sum_{v \in V} d(v) = 2 \left[\sum_{(u,v) \in E} m_2^+(u,v), \sum_{(u,v) \in E} m_2^-(u,v) \right] = 2S(G). \quad \text{So} \quad 2S(G) = \sum_{v \in V} d(v). \quad \text{i.e.}
$$
\n
$$
2S(G) = \left(\sum_{v \in V} k_1, \sum_{v \in V} k_2 \right).
$$

This gives $2S(G) = (pk_1, pk_2)$. Hence the result.

Theorem 3 If G is (k, k') bipolar fuzzy graph, then

$$
2S(G) + O(G) = (pk, pk') where p = |V|.
$$

Proof. Let G=(A,B) be a bipolar fuzzy graph where $A = (m^+_{1}, m^{\dagger}_{1})$ and $B = (m^+_{2}, m^{\dagger}_{2})$ be two bipolar fuzzy sets on a non-empty finite set V and $V \times V$ respectively. Since G is a (k, k') -totally regular fuzzy graph. So $k = td^+(v) = d^+(v) + m^+(v)$ and $k' = td^-(v) =$ $d^-(v)$ + m⁻₁(v) for all $v \in V$. Therefore $\sum k = \sum d^+(v) + \sum m^+_1(v)$ $v \in V$ $v \in V$ $v \in V$ $\ddot{}$ ĕ $^{+}$ $\sum_{v \in V} k = \sum_{v \in V} d^+(v) + \sum_{v \in V} m_1^+(v)$ and $k' = \sum d^-(v) + \sum m^-_1(v)$ $v \in V$ $v \in V$ $v \in V$ -E - $\sum_{v \in V} k' = \sum_{v \in V} d^-(v) + \sum_{v \in V} m_1^-(v)$. $pk = 2S^+(G)$ and $pk = 2S^-(G)$. So $pk + pk' = 2(S^+(G))$

+
$$
S'(G)
$$
 + $O^+(G)$ + $O'(G)$. Hence $2S(G)$ + $O(G)$ = (pk, pk').

References

- [1] M. Akram, Bipolar fuzzy graphs, Information Sciences, doi:10:1016/j.ins.2011:07:037, 2011.
- [2] R. H. Goetschel, Introduction to fuzzy hypergraphs and Hebbian structures, Fuzzy Sets and Systems, 76; 113 -130, 1995.
- [3] R. H. Goetschel, Fuzzy colorings of fuzzy hypergraphs, Fuzzy Sets and Systems, 94; 185 - 204, 1998.
- [4] R. H. Goetschel and W. Voxman, Intersecting fuzzy hypergraphs, Fuzzy Sets and Systems, 99, 81 - 96, 1998.
- [5] A. Rosenfeld, Fuzzy graphs, in: L.A. Zadeh, K.S. Fu, M. Shimura (Eds.), Fuzzy Sets and Their Applications, Academic Press, New York, 77 - 95, 1975.
- [6] S. Samanta and M. Pal, Fuzzy threshold graphs, CIIT International Journal of Fuzzy Systems, 3(12), 360 - 364, 2011.
- [7] S. Samanta and M. Pal, Fuzzy tolerance graphs, International Journal of Latest Trends in Mathematics, 1(2), 57 - 67, 2011:
- [8] Samanta and M. Pal, Bipolar fuzzy intersection and line graphs, Communicated.
- [9] S. Samanta and M. Pal, Fuzzy k-competition graphs and p-competition fuzzy graphs, Communicated.

- [10] L.A. Zadeh, Fuzzy sets, Information and Control, 8, 338 353, 1965.
- [11] W.R. Zhang, Bipolar fuzzy sets and relations: a computational frame work for cognitive modeling and multiagent decision analysis, Proceedings of IEEE Conf., 305 - 309, 1994.
- [12] Biswas .R, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy sets and Systems, 35(1990) 121-124.
- [13] Das. P.S. Fuzzy groups and level subgroups, J.Math.Anal. Appl, 84 (1981), 264-269.
- [14] Ibrahim Ibrahimoglu and Dogan Coker, On Intuitionistic Fuzzy Subgroups and Their Products, BUSEFAL 70, 1997.
- [15] Mohamed Asaad, Groups and Fuzzy subgroups Fuzzy sets and systems 39(1991), 323-328.
- [16] Musheer Ahmad, Some Characterizations of Intuitionistic Fuzzy Subgroups, Asian Journal of Information Technology, 4(1), 96-100, 2005.
- [17] N. Jacobson, Lectures in Abstract Algebras, East-West Press, 1951.
- [18] Palaniappan.N, Muthuraj.R, Anti Fuzzy Group and Lower level subgroups, Antarctica J.Math., 1(1)(2004), 71 – 76.
- [19] Prabir Bhattacharya, Fuzzy Subgroups: Some Characterizations, J.Math. Anal. Appl.128 (1987) 241 – 252.
- [20] Rosenfeld, Fuzzy groups, J.Math.Anal.Appl, 35(1971) 512 517.
- [21] Vasantha Kandasamy, W. B. and Meiyappan, D., Bigroup and Fuzzy bigroup, Bol. Soc. Paran Mat, 18, 59-63 (1998).