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Abstract: In this paper, the modified first integral 

method is use to find the actual solution of many 

nonlinear equation in simple way ,and anew 

technical to solving nonlinear partial differential 

equation. 
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Introduction: 

Many methods obtaining the exact solution of non linear 

equation ,some of the techniques are the bilinear transformation [1] ,the 

sine cosine method [2],F-expansion method [3], the first integral method 

was first proposed by Feng[4] to solving Burger-Korteweg- devries 

equation and so on, in this paper investigation a traveling wave 

solution for non linear partial differential equation ,study nonlinear 

phenomena ,in solving modified kdv-kp can be based on the theory of 

commutative algebra ,using the first integral method technique to 

solving modified kdv-kp equation . 

First integral method: 
The non linear partial differential equation form: 

..),.........,,,,( xtxxtx FFFFFw                                          (1)  

Where        is the solution of (1) we use the transforms : 

txftxf   ),(),(                                          (2)                                                                                                      

we use the wave  transforms : 
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The Eq (1) transforms the ordinary differential equations we obtain : 

0.....),.........,,( fffp                                                 (4)                                                                                                                     

Anew independent variable:  

)()(),()(  fyfx                                           (5)                                                                                                                   

The system of ordinary differential equations: 
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By the qualitative theory of differential equation [6],we find the 

integral of (6) under same condition , then the general solution of (6) 

can be obtained directly . However ,in general ,it is really difficult for 

us to realize this even for one first integral , because for a given plane 

autonomous system ,find its first integral will apply the Division 

theory to option first integral (6) , An exact solution of (1) obtained by 

solving this equation , Now let us recall the Division theory. 

Division theorem: 

Suppose that        and        are polynomials of two variables   

and   in       .  and        is irreducible in       . if        

vanishes at all points of       , then there exists a polynomial        

in        such that                    . 

where M is a positive integer, Mk 1 , let  
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to determine the parameter M, we then collect all coefficients of 

powers of Y in the resulting equation where these coefficients have to 

vanish . 

Having determined these parameters we obtain an analytic solution 

u(x,t) in a closed form . 

this method may give periodic solution as well. 

1. the Gardner eguation: 

The standard Gardner equation ,or the combined kdv-mkdv equation , 

reads: 

0,,032 2 bauubuauuu xxxxxt 
             (7)   

Using the wave variable  
ctx   and integrating the result will 

convert to the ODE: 

0''32  ubuaucu                                                (8)                                                                                                              

using (5) we get : 
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According to the first integral method, we suppose that X and Y are 

nontrivial solution of (9) and  
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Balancing 
3u with 

''u gives 

3M=M+2  

1M                                                                                          (11)                                                                                                                              

using (11) in (10) we get : 

010  Yaaq                                                                   (12)                                                                                                                       
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using Division Theorem, there exists a polynomial yxhxg )()( 
in the complex domain c[X,Y] such that: 

                                                                                                    

                                 (13) 

using (12) in (13) and coefficients of Y on both sides we get: 
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since 1)(1 xa ,chooseh(x)=0, 01
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using (17) in (12), we obtain: 
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combining (18) with (6),we obtain the exact solution to (7) and then 

the exact solution to the Gardner equation can be written as : 
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where 
0 is integration constant. Thus the travelling wave solution to 

the Gardner equation can be written as : 
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2. Exact solution to the  kdv system: 

The  kdv system given by : 
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Use the wave transformation :
 

)),(),(),(),( ctxxgtxvftxu              (24)                                                                                        

Where lk, and  are constants and )(f is real 

function ,Substituting (24)in(1)we get: 

02 '''''  fggffcf                                           (25)                                                                                                              

0''  ffcg                                                                       (26)              

integration(10) we can re write :  
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 is an integration constant , Now substitution (27)in (25) gives: 
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Integrating (28)we obtain : 
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Where     is an integration constant , Now use new variables

)(fX   and )(' fY  , Now Eq(29) changes into a system 

of ordinary differential equation : 
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Now Appling Division theorem  , suppose that )(X and )(Y are 

nontrivial solution of (30): 
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Is an irreducible Polynomial in the complex domain  YXC , such 

that: 
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).........,2,1,0)(( miXai  are polynomialand 

0)( Xam
,Eq(32) called first integral method ,there exist a 

polynomial  YXhXXg )()(   in the complex domain  yxC ,
such that : 
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Balancing 
3u with 

''u gives 

3M=M+2  

1M                                   

 by comparing with the coefficient  )0,1( iY i
on both sides of (33) 

we have : 

XXaXgX
c

Xca

XaXhXXaXga

XaXha

)()(
3

2
)2(

)()()()(

)()(

0

3

1

010
'

11
'















           (34)                                                                                

Let 0)( Xh  then )(1 Xa is constant choose 1)(1 Xa , 

substitution in (34) then (34)we can write: 
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If  assume that :   
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Substituting (36) in (35) we obtain : 

Substituting (34)in (29) ,and drive a system of algebraic equations 

whose solution yield : 
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Setting (37) in (31) we obtain :  
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Now, by combining (38) and (22) ,solving this equation and consider 
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we get :
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0 is arbitrary constant . 

Exat solution to the 2D-BKdV equation: 
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where s,, and  are real constants. assume that : 
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where wlh ,, are real constants. substitution of (41)in(40) yields : 
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integration (42) twice with respect to  , then we have : 
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where R is the second integration constant and the first one is take to 
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Now (44) changes into a system of ordinary differential equation : 
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Now Appling Division theorem  , suppose that )(X and )(Y are 
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Is an irreducible Polynomial in the complex domain  YXC , such 
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Balancing 
3u with 

''u gives 

2M=M+2  
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 by comparing with the coefficient  )2,1,0( iY i
on both sides of 

(33) we have : 
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Let 0  then )(2 Xa is constant choose 1)(2 Xa , 

substitution in (49) then (49)we can write: 
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If  assume that :   
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D is arbitrary integration constant . 
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we assume that : 

Rk
r

kb  ,
25

6 2

and 0k                                               (54)                                                                                                             

Substituting (54)in (53)in(47) ,and drive a system of algebraic 
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from (55),y can be expressed in terms of x,i.e., 
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combining(45)and(56),we have : 
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CONCLUTION: 

The  new modification first integral method , successfully for solving 

allot of nonlinear  equation  , and establish travelling wave solutions , 

which is based on the ring  theory of commutative algebra , and us to 

solve complicated and tedious algebra calculation . 
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