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Abstract in this paper, we propose a combination form of the
sumudu transform and Adomain decomposition method to solve
nonlinear Volterra integro — differential equation of the second
kind. The result reveals that the proposed method is very
efficient, simple and can be applied to other applications.
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I. INTRODUCTION

This It is will know that linear and nonlinear Volterra integro
— differential equation arise in many scientific fields such as
the population dynamic, neutron diffusion and semi conductor
devices.

The Volterra integro — differential equation appears in the
form

uM(x) = f(x)+ ETK(x,t)u(t)dt , 1)

It is our coal in this paper study the nonlinear Volterra integro
— differential equations of the second kind given by

u(x)= f(x)+ jK(x,t)F(u(t))dt , 2)

0
Where u”(x)are the nth derivative of U(X) , and the initial
condition u(O), u'(O), ........ , u“’l(O) are prescribed. The

kernel K(X,t) and the function f(X) are given real- valued

functions, and F(u(t)) is a nonlinear function ofu(X) .

Several techniques such that variation iteration method, series
solution method, and combined Laplace transform — Adomain
decomposition method see [5 - 16] have been used for solving

these problems. The advantage of these methods is ItS
capability of combining the two powerful methods
for obtaining exact solutions for nonlinear
equations.

Il. SUMUDU TRANSFORM

In early 90’s, Watugala see [4] introduced a new integral
transform , named the sumudu transform and applied it to the
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solution of ordinary differential equations in control
engineering problems. The sumudu transform is defined over
the set of function

14

A={f(t):3M,7,,7,>0, |f(t) <M eTi",if'[e(—l)j x[0,00)

By the following formula

)= s[E]=[tte ot ueln,m) @

For more details see [1- 3].

I11. COMBINE SUMUDU TRANSFORM AND ADOMAIN
DECOMPOSITION METHOD

To illustrate the basic idea of this method, we consider the
kernel K(X,t) of equation (2) as difference kernel that

depends on the difference (X—t) :

The nonlinear Volterra integro- differential equation (2) can
be expressed as

uP(x)= f(x)+ iK(x—t) F(u(t))dt @)

Consider two functions f,(x) and f,(X) that possess the
conditions.

Let sumudu transform for the functions f,(x) and f,(x)
given by

S[fl(x)]= F(u), S[fz(x)]z R, (u) (®)

The sumudu convolution product of these two functions is
defined by
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S[(f,+ 1, - sﬁ fL(x=) fz(x>dt}

R WR) ©

To solve the nonlinear Volterra integro- differential equation
by using sumudu transform, it is essential to use the sumudu

transform of the derivatives of U (X) are defined by

Sl (x)] = S[L?(ﬂ —K?) - @ _““_ﬂ(o) @

This simply gives

sluf)- [u”] 1)y u-uf),
slu'(x)]=u*U(u)-u*u(0)-uu'0), ®)
Slu"()]=u U u)-u"u(0)-u*u(0)-u"u'(0),

And so on for derivatives of higher order, where

U(u) = S[u(x)].

Applying Sumudu transform to both sides of Eg. (2) to get
o S (0)-u U 0)-. -0 u0)

=S[f (x)]+u S[K (x—t)]S[F(u(x))] ®

Or equivalently

S[u(x)) = u(0)+uu'(0)+ ... +u™* u"*(0)+ 10)
+u" [ (x)[+u™* S[K(x-t)]S[F(u(x))]

Taking the inverse sumudu transform to both sides of Eq. (10)
to get

u(x) = u(0)+xu’(0)+ .. +Xn__11)! u"(0)+ a1
Sl St (] +57 o STK (x-S [F (ulx)]

Now, we apply the Adomain decomposition method

u(x) =>u, (x) (12)
n=0
And the nonlinear terms can be decomposed as
Fux)= S A, (x) (13)
n=20

For some Adomain polynomials A, (U ) that are given by
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(14)

A = n,d/ln[ [nZo/l” ]Lo,nzo,l,z,...

Substituting Eq. (12) and Eq. (13) into Eq. (11) leads to

0 n-1

;}Un(XF u(0)+xu'(0)+ ... "0 u"(0)+
S'I[U”S[f(X)]]+S‘1[ 0" S[K (x—t)]S {ZA ﬂ

So that the recursive relation is given by

(15)

Uy (x)= u(0)+ xu'(0)+..v.ve. + —— s L s[f (x)],

(n-1p

uk+1(x) = S_l [un+l S[K(X_t S[Ak]]’ kZO (16)

IV.NUMERICAL APPLICATIONS

The combined sumudu transform — Adomain decomposition
method for solving nonlinear Volterra integro- differential
equations of the second kind will be illustrated by studding the
following examples.

EXAMPLE 1: consider the initial value problem

u'(x)=g— Oty ger e
4 2 2 4

2(t)dt, u(0) = 2

Notice that the kernel K(X—t) = (X—t) . Taking sumudu
transform of both sides of Eq. (17) gives

S[u'(x)|=S P—E x—Ly?_ger e } +
4 2 2 4 (18)

x (17)
+I(x—t)u
0

+8[(x—t)*u?(x)]
So that
9 5 3 1
—].U _—1027_7_2_7_7
wUl-u0) i 2 1+u 4(1+2u)+ (19)
+u28[u2(x)],
Or equivalently
Oy Dy 3w U
V)= By ) (20)
+u3S[u2(x)],
Applying the inverse sumudu transform to both sides of Eq.
(20) gives
9 5, x° 11 .,
u(x)= 24 X=X —§—3+3e atgt 1)
+87 u* sfuz ()]
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Or equivalently

u(x)= x2Sy Tysy
2 3 4 5!

+87 [u slu2(x)]

Substituting the series assumption for u(x) and the Abomain

(22)

polynomials for UZ(X) as given above in Eq. (12) and Eq. (13)
respectively, and using the recursive relation to obtain

U, (x)= 2wt iy 2y 2y Ty
2 3 4 ol

U, (x) =S’ s[A]]. k=0.
Recall that the Adomain polynomials for F(U(X)): uz(X)
are given by

A = u02 ,

A= 2uyUy,

A, =2u,u, +U,°,

A,=2u,u,+2u,U,.

Substituting these polynomials into the recursive relation to
find

(24)

U (x)= 2- N E'x3+glx4— le5
2 3 4 5 (25)

2 1 1
(x) = == Zxt =X+
3 6 20
Using (12), to find the series solution of eq. (17), in the form

u(x)= 2—x+%x2 —$x3 REPCRE

4" sl (26)
That converges to the exact solution
u(x)=1+e*. 27)
Example2: consider the following integro-differential

equation
u"(x)= —l—%(sin X+8iN2X )+ 2C0S X +
X (28)
+Isin(x—t)uz(t)dt,u(o):—l, u'(0)=1

0
Taking Sumudu transform of (28), to find

S[u”(x)]:S[—l—%(sin X+sin 2x)+2005x} +

+S[sin(x—t)u?(x)),

(29)

So that
uU(u)-u2u(0)-uu'(0) =
2 30
v 2u 2 U S[uz(x)], (30)

Jev?) ) 1ol L
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Or equivalently

3 3
U(u) =——1+u-u?——" - 2 ot
3L+u?) 3f+au?)
o ) (31)
u u
+ + S{u?(x)|,
1+u® 1+u? [ ( )]
Applying inverse Sumudu to both sides of Eq. (31) gives
u(x) R N I BN I
21 3 12 40
1, 11 G Ut
F—X ——— X"+, S Slu“(x (32)
360 5040 L+u2 [ ( )]
Proceeding as before we find
2
U, (%) ctaxe Xt e Ly L ye
2l 3 12 40 360
ul(x)zlx“—ixS—ix6 Ly
4 60 720 504

(33)
Using (12), to find the series solution of eq. (28), in the form

X x> X X xt X
U(X) = X= St e Tt | It =t |, (32)
3 57 20 4 ¢
That converges to the exact solution
u(x) = sinx — cosx. (35)

V. CONCLUSIONS

In the present paper, we have combined form of Sumudu
transform with Adomain decomposition method is effectively
used to solve nonlinear Volterra integro- differential equations
of the second kind.

From the examples considered here, it can be easily seen that
this method obtains results as accurate as possible.
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