
Presence Cloud for Mobile Presence Services in

Social Network Application
Gonchi Shobha

#1
, A.Anitha

*2

#1
M.Tech Student, Department of Computer Science Engineering, Sri Mittapalli Institute of Technology for Women,

Tummalapalem, JNTUK, AP, INDIA.
*2

Asst.Professor, Department of Computer Science Engineering, Sri Mittapalli Institute of Technology for Women,

Tummalapalem, JNTUK, AP, INDIA.
1
shobhagonchi@gmail.com

2
anitha09@gmail.com

Abstract— Now a day’s Social networking services on the

Internet are growing and increasing number of people are using

these new ways to communicate and share information. At the

same time mobile phones are becoming more powerful and

increasingly offer high speed Internet connectivity. Because of

this people expect these social networking services to be available

on their mobile device. The mobile presence service is maintains

each mobile user’s presence information, such as the current

status (online/offline), GPS location and network address, and

also updates the user’s online friends with the information

continually. If the availability updates occur frequently, the

enormous number of messages distributed by presence servers

may lead to a scalability problem in a large-scale mobile presence

service. To solve the problem, we propose efficient and scalable

server architecture, called Presence Cloud, which enables mobile

presence services to support large-scale social network

applications. When a mobile user joins a network, Presence

Cloud searches for the presence of his/her friends and notifies

them of his/her arrival. Presence Cloud organizes presence

servers into a quorum-based server-to-server architecture for

efficient presence searching. It also leverages a directed search

algorithm and a one-hop caching strategy to achieve small

constant search latency. We analyze the performance of Presence

Cloud in terms of the search cost and search satisfaction level.

The search cost is defined as the total number of messages

generated by the presence server when a user arrives; and search

satisfaction level is defined as the time it takes to search for the

arriving user’s friend list. The results of simulations demonstrate

that Presence Cloud achieves performance gains in the search

cost without compromising search satisfaction.

Keywords— Presence Cloud, Social Network, GPS, Mobile

presence.

I. INTRODUCTION

Over the last few years mobile communication devices

have become increasingly powerful and today many of them

support applications being installed and executed on the

device. Simultaneously the expansion of the third generation

wide area cellular networks and other high speed wireless data

technologies have made the Internet more accessible for

mobile users, at prices suitable for surfing the Internet and

with sufficiently low delay that even interactive packet based

services are feasible. At the same time, the user experience of

the web is expanding - facilitating increased collaboration and

information sharing between users. Along with low cost high

quality cameras, microphone, arrays etc. the web is supporting

growing amounts of user generated content. This has lead to

the evolution of online social networks1 and other means of

fostering interaction. Over the last several years, the way that

people use the web has changed, today four of the ten most

visited Internet sites are social networking services [4]. The

problems addressed in this master thesis concern how to

simplify users’ access to their social networks on the Internet

when these users are using their mobile (phonebook equipped)

device. The thesis also addresses how to match contacts from

social networking services with contacts in the mobile

device’s phonebook. Additionally a prototype solution will

demonstrate this concept [2]. This prototype will enhance the

capabilities of a mobile phone by integrating existing social

networks with the phonebook. This application is started from

the phonebook so it gives the impression of being integrated

with the phonebook, while at the same time provides fast

access to contact information. Furthermore, the application

provides a widget platform which enables users to create their

own widgets, using web technologies that can access device

functionality such as persistent storage and phonebook

information. One of the initial design goals of the project was

to try to avoid using a remotely located server and put all the

logic of the application in the mobile device. An application

that requires a fixed server might need potentially costly,

updates of infrastructure if it rapidly becomes popular.

Fig. 1: Social network overlap

Social network graphs can be created using information

found in different places, such as the contact lists from social

© 2014 IJAIR. All Rights Reserved 154

International Journal of Advanced and Innovative Research (2278-7844) / # 154 / Volume 3 Issue 8

networking sites, the phonebook from mobile devices, and

blog rolls. By creating social network graphs it is possible to

see how they overlap and use that information to synchronize

the contacts on different social networks [1]. This information

can then be used to enable communication with the people

found in the different social networks. Fig.1 tries to illustrate

how different social networks overlap. Furthermore it shows

that different contact lists, such as a mobile device’s

phonebook or a contact list on a social networking site may

contain contacts from several different social networks and

therefore also overlaps.

II. THE PROBLEM STATEMENT

In this section, we describe the system model, and the

buddy-list search problem. Formally, we assume the

geographically distributed presence servers to form a server to

server overlay network, G = (V; E), where V is the set of the

Presence Server (PS) nodes, and E is a collection of ordered

pairs of V. Each PS node ni∈ V represents a Presence Server

and an element of E is a pair (ni; nj) ∈ E with ni; nj∈ V.

Because the pair is ordered, (nj ; ni) ∈ E is not equivalent to

(ni; nj) ∈E. So, the edge (ni; nj) is called an outgoing edge of

ni, and an incoming edge of nj . The server overlay enables its

PS nodes to communicate with one another by forwarding

messages through other PS nodes in the server overlay. Also,

we denote a set of the mobile users in a presence service as U

= {u1; : : : ; ui; : : : ; um}, where 1 ≤ i ≤ m and m is the

number of mobile users. A mobile user ui connects with one

PS node for search other user’s presence information, and to

notify the other mobile users of his/her arrival. Moreover, we

define a buddy list as following.

Definition 1. Buddy list, Bi = {b1; b2; : : : ; bk} of user ui ∈

U, is defined as a subset of U, where 0 < k ≤|U|. Furthermore,

B is a symmetric relation, i.e, ui ∈Bj implies uj∈ Bi.For

example, given a mobile user up is in the buddy list of a

mobile user uq, and the mobile user uq also appear in the

buddy list of the mobile user up. Note that to simplify the

analysis of the Buddy-List Search Problem; we assume that

buddy relation is a symmetric. However, in the design of

Presence Cloud, the relation of buddies can be unilateral

because the search operation of Presence Cloud can retrieve

the presence of a mobile user by given the ID of the mobile

user.

Problem Statement: Buddy-List Search Problem when a

mobile user ui changes his/her presence status, the mobile

presence service searches presence information of mobile

users in buddy list Bi of ui and notifies each of them of the

presence of ui and also notifies ui of these online buddies. The

Buddy-List Search Problem is then defined as designing a

server architecture of mobile presence service such that the

costs of searching and notification in communication and

storage are minimized.

Analysis of a Naive Architecture of Mobile Presence

Service: In the following, we will give an analysis of the

expected rate of messages generated to search for buddies of

newly arrived user in a naive architecture of mobile presence

services. We assume that each mobile user can join and leave

the presence service arbitrarily, and each PS node only knows

those mobile users directly attached to it. We also assume the

probability for a mobile user to attach to a PS node to be

uniform. Let’s denote the average arriving rate of mobile users

in a mobile presence service. In this paper, we focus on

architecture design of mobile presence services and leave the

problem of designing the capacity of presence servers as a

separate research issue. Thus, we assume each PS node to

have infinite service capacity [3]. Hence,µ=λ/n is the average

rate of mobile users attaching to a PS node, where n is

denoted the number of PS nodes in a mobile presence service.

Let h denote the probability of having all users in the buddy

list of ui to be attaching to the same PS node as ui. It is the

probability of having no need to send search messages when

ui attaches to a PS node. Thus,

h = 〖1/n〗 =n^Bi

The expected number of search messages generated by this

PS node per unit time is then (n − 1) × (1 − h) ×µ.

III. DESIGN OF PRESENCE CLOUD

Presence Cloud is used to construct and maintain

distributed server architecture and can be used to efficiently

query the system for buddy list searches. Presence Cloud

consists of three main components that are run across a set of

presence servers. In the design of Presence Cloud, we refine

the ideas of P2P systems and present a particular design for

mobile presence services. The three key components of

Presence Cloud are summarized below:

•Presence Cloud server overlay organizes presence servers

based on the concept of grid quorum system [29]. So, the

server overlay of Presence Cloud has a balanced load property

and a two-hop diameter with O(√n) node degrees, where n is

the number of presence servers.

•One-hop caching strategy is used to reduce the number of

transmitted messages and accelerate query speed. All presence

servers maintain caches for the buddies offered by their

immediate neighbours.

•Directed buddy search is based on the directed search

strategy. Presence Cloud ensures a one-hop search; it yields

small constant search latency on average.

Presence Cloud Overview: The primary abstraction exported

by our Presence Cloud is used to construct scalable server

architecture for mobile presence services, and can be used to

efficiently search the desired buddy lists. We illustrated a

simple overview of Presence Cloud in Fig. 2. In the mobile

Internet, a mobile user can access the Internet and make a data

connection to Presence Cloud via 3G or Wi fi services. After

© 2014 IJAIR. All Rights Reserved 155

International Journal of Advanced and Innovative Research (2278-7844) / # 155 / Volume 3 Issue 8

the mobile user joins and authenticates him/her to the mobile

presence service, the mobile user is determinately directed to

one of Presence Servers in the Presence Cloud by using the

Secure Hash Algorithm, such as SHA-1 [5]. The mobile user

opens a TCP connection to the Presence Server(PS node) for

control message transmission, particularly for the presence

information. After the control channel is established, the

mobile user sends a request to the connected PS node for

his/her buddy list searching. Our Presence Cloud shall do an

efficient searching operation and return the presence

information of the desired buddies to the mobile user.

Fig.2. An overview of Presence Cloud

Presence Cloud Server Overlay: The Presence Cloud server

overlay construction algorithm organizes the PS nodes into a

server-to-server overlay, which provides a good low-diameter

overlay property. The low-diameter property ensures that a PS

node only needs two hops to reach any other PS nodes. The

detailed description is as follows. Our Presence Cloud is based

on the concept of grid quorum system [29], where a PS node

only maintains a set of PS nodes of size O(√n), where n is the

number of PS nodes in mobile presence services. In a

Presence Cloud system, each PS node has a set of PS nodes,

called PS list, that constructed by using a grid quorum system,

shown in Fig. 3 for n=9. The size of a grid quorum is ⌈√n⌉×√

n⌉. When a PS node joins the server overlay of Presence

Cloud, it gets an ID in the grid, locates its position in the grid

and obtains its PS list by contacting a root server1. On the⌈√n⌉

× ⌈√n⌉ grid, a PS node with a grid ID can pick one column and

one row of entries and these entries will become its PS list in a

Presence Cloud server overlay.

Fig.3. A perspective of Presence Cloud Server Overlay

 Fig.3 illustrates an example of Presence Cloud, in which

the grid quorum is set to ⌈√9⌉*⌈√9⌉. In the Fig. 3, the PS

node8 has a PS list {2, 5, 7, 9} and the PS node 3 has a PS list

{1, 2, 6, 9}. Thus, the PS node 3 and 8 can construct their

overly networks according to their PS lists respectively. We

now show that each PS node in a Presence Cloud system only

maintains the PS list of size O(√n), and the construction of

Presence Cloud using the grid quorum results in each PS node

can reach any PS node at most two hops.

One-hop Caching: To improve the efficiency of the search

operation, Presence Cloud requires a caching strategy to

replicate presence information of users. In order to adapt to

changes in the presence of users, the caching strategy should

be asynchronous and not require expensive mechanisms for

distributed agreement. In Presence Cloud, each PS no

demaintains a user list of presence information of the attached

users, and it is responsible for caching the user list of each

node in its PS list, in other words, PS nodes only replicate the

user list at most one hop away from itself. The cache is

updated when neighbours establish connections to it, and

periodically updated with its neighbours. Therefore, when a

PS node receives a query, it can respond not only with

matches from its own user list, but also provide matches from

its caches that are the user lists offered by all of its neighbours.

Our caching strategy does not require expensive overhead for

presence consistency among PS nodes. When a mobile user

changes its presence information, either because it leaves

Presence Cloud, or due to failure, the responded PS node can

disseminate its new presence to other neighbouring PS nodes

for getting updated quickly. Consequently, this one-hop

caching strategy ensures that the user’s presence information

could remain mostly up-to-date and consistent throughout the

session time of the user. More specifically, it should be easy

to see that, each PS node maintains roughly 2(⌈√n⌉−1)×u

replicas of presence information, due to each PS node

replicates its user list at most one hop away from itself. Here,

u is denoted the average number of mobile users in a PS node.

Directed Buddy Search: We contend that minimizing

searching response time is important to mobile presence

services. Thus, the buddy list searching algorithm of Presence

Cloud coupled with the two-hop overlay and one-hop caching

strategy ensures that Presence Cloud can typically provide

swift responses for a large number of mobile users. First, by

organizing PS nodes in a server-to-server overlay network, we

can therefore use one-hop search exactly for queries and thus

reduce the network traffic without significant impact on the

search results. Second, by capitalizing the one-hop caching

that maintains the user lists of its neighbours, we improve

response time by increasing the chances of finding buddies.

Clearly, this mechanism both reduces the network traffic and

response time. Based on the mechanism, the population of

mobile users can be retrieved by a broadcasting operation in

any PS node in the mobile presence service [7]. Moreover, the

broadcasting message can be piggybacked in a buddy search

message for saving the cost.

© 2014 IJAIR. All Rights Reserved 156

International Journal of Advanced and Innovative Research (2278-7844) / # 156 / Volume 3 Issue 8

IV. COST ANALYSIS

 In this section, we provide a cost analysis of the

communication cost of Presence Cloud in terms of the number

of messages required to search the buddy information of a

mobile user. Note that how to reduce the number of inter-

server communication messages is the most important metric

in mobile presence service issues. The buddy-list search

problem can be solved by a brute-force search algorithm,

which simply searches all the PS nodes in the mobile presence

service [6]. In a simple mesh-based design, the algorithm

replicates all the presence information at each PS node; hence

its search cost, denote by QMesh, is only one message. On the

other hand, the system needs n – 1message to replicate a

user’s presence information to all PS nodes, where n is the

number of PS nodes. The communication cost of searching

buddies and replicating presence information can be

formulated as Mcost = QMesh +RMesh, where RMesh is the

communication cost of replicating presence information to all

PS nodes. Accordingly, we have Mcost =O(n).

In the analysis of Presence Cloud, we assume that the

mobile users are distributed equally among all the PS nodes,

which is the worst case of the performance of Presence Cloud.

Here, the search cost of Presence Cloud is denoted as Qp,

which is 2 × (⌈√n⌉ − 1) messages for both searching buddy

lists and replicating presence information. Because search

message and replica message can be combined into one single

message, the communication cost of replicating, Rp = 0. It is

straightforward to know that the communication cost of

searching buddies and replicating presence information in

Presence Cloud is Pcost = Qp = 2×(⌈√n⌉−1). However, in

Presence Cloud, a PS node not only searches a buddy list and

replicates presence information, but also notifies users in the

buddy list about the new presence event. Let b be the

maximum number of buddies of a mobile user. Thus, the

worst case is when none of the buddies are registered with the

PS node searched by the search messages and each user on the

buddy list is located on different PS nodes. Since Presence

Cloud must reply every online user on the buddy list

individually, it is clear that extra b messages must be

transmitted. In the worst case, it needs other 2×(⌈√n⌉−1)

messages (when b >> 2(⌈√n⌉−1)). When all mobile users are

distributed equally among the PS nodes, which is considered

to be the worst case, the Pcost = 4×(⌈√n⌉−1).

TABLE I
Presence Architecture Comparison

V. SIMULATION RESULTS

 We first evaluate and compare the three server

architectures by considering the total buddy searching

messages metric. We instantiated a server network of 256 PS

nodes in our simulator, and ran a number of experiments to

investigate the effect of scalability of PS nodes on involved

searching messages. More precisely, we varied the user arrival

rate from 100 per second to 8,000 per second to explore the

relation between user arrival rate and the total searching

messages. In this test, the number of buddies is set to 100.

Fig.4 depicts the total number of searching message

transmissions during simulation time (1,800 seconds) under

various rates of user arrival patterns (100 to 8,000 per second).

We show that for a given number of PS nodes, the total

number of searching messages is dominated by the user

arrival rate (λ) significantly. In Fig.4, the total number of

searching messages significantly increased as the user arrival

rate increased. We could see that Presence Cloud outperforms

all other designs. Mesh-base and Chord both require an

enormous number of messages for searching buddy lists in

higher user arrival rates. However, vast message transmissions

may limit the scalability of the server architecture in mobile

presence services.

Fig. 4. The total message transmissions during simulation

time (1,800s). (The x axis of this figure is in

logarithmic scale)

 Fig.5 shows the average number of searching message

transmissions during simulation time (1,800 seconds) under

various rates of user arrival patterns (100 to 8,000 per second).

As shown in Fig. 8, the average number of searching message

transmissions is independent of user arrival pattern. Increasing

the rate of user arrival pattern does not increase the average

searching message transmissions. Our Presence Cloud

requires the least message transmissions. But mesh-based

requires O(n) searching complexity (note that the number of

PS node is set to 256), the experimental results fit our analysis

in the Section 5. Chord-based design performs second highest

message transmissions per searching operation. However, if

the server architecture is not designed well, the scalability

problem of servers may limit itself to scale more than

thousands size, hence a poor server architecture may not

support a very large number of servers.

© 2014 IJAIR. All Rights Reserved 157

International Journal of Advanced and Innovative Research (2278-7844) / # 157 / Volume 3 Issue 8

Fig. 5. The average message transmissions per

searching operation

 As shown as Fig.6, for Presence Cloud, the buddy

searching latency grows gently with the number of PS nodes.

However, the buddy searching latency of mesh-based design

is significantly better than Presence Cloud. The reason is that,

by using the mesh-based design, every PS node can retrieve

all desired buddy information in its current replica and return

the presence information of buddy to user in one hop RTT,

and the one hop RTT is quite small in our assumption.

Presence Cloud, on the other hand, needs to retrieve all

available replicas from its neighbours, which affects the

buddy search time. Although the mesh-based design achieves

a faster buddy search time and a higher replica hit ratio than

Presence Cloud, it sacrifices the scalability of the server

architecture in mobile presence services. Under the Chord-

based design, a search operation may need to visit a

logarithmic number of PS nodes to find the buddies of users.

buddy until 240. As shown in Fig. 7, in all designs, the buddy

searching latency is not impacted by the number of buddies.

The search latency is dominated by the diameter of the

overlay, thus the buddy searching latency does not grows with

the number of buddies. Clearly, it is a trade-off, the

experiment results show that mesh-based design performs best

search satisfaction, but suffers heavily communication cost.

However, our Presence Cloud reduces the significantly

communication cost without sacrificing search satisfaction

extremely.

VI. CONCLUSION

In this paper, we have presented Presence Cloud, a

scalable server architecture that supports mobile presence

services in large-scale social network services. We have

shown that Presence Cloud achieves low search latency and

enhances the performance of mobile presence services. In

addition, we discussed the scalability problem in server

architecture designs, and introduced the buddy-list search

problem, which is a scalability problem in the distributed

server architecture of mobile presence services. Through a

simple mathematical model, we show that the total number of

buddy search messages increases substantially with the user

arrival rate and the number of presence servers. The results of

simulations demonstrate that Presence Cloud achieves major

performance gains in terms of the search cost and search

satisfaction. Overall, Presence Cloud is shown to be a scalable

mobile presence service in large-scale social network services.

REFERENCES

[1] Facebook, http://www.facebook.com.

[2] Twitter, http://twitter.com.

[3] Foursquare http://www.foursquare.com.
[4] Google latitude, http://www.google.com/intl/enus/latitude/intro.html.

[5] Buddy cloud, http://buddycloud.com.

[6] Mobile instant messaging, http://en.wikipedia.org/wiki/Mobile instant
messaging

[7] R. B. Jennings, E. M. Nahum, D. P. Olshefski, D. Saha, Z.-Y. Shae, and C.
Waters, ”A study of internet instant messaging and chat protocols,”

IEEE Network, 2006.

[8]C.Chi, R.Hao and D.Wang,”Ims presence sarver”.

Fig.6. Average buddy searching latency vs. number

of PS nodes (The x axis of this figure is in logarithmic

scale)

Fig. 7. Average buddy searching latency vs. number

of PS nodes

We also studied the buddy searching latency of server

architecture designs while varying the number of buddies. Fig.

7 depicts the buddy searching latency with the addition of

© 2014 IJAIR. All Rights Reserved 158

International Journal of Advanced and Innovative Research (2278-7844) / # 158 / Volume 3 Issue 8

