
Shiva et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 532

A New Distributed Cut Detection Approach for Identifying Cuts

in Wireless Sensor Networks

Shiva Kumar Rameswarapu #1
, Dr.M.V.Rama Sundari *2

, Dr.S.Maruthu Perumal
 *3

#1
IInd M.TECH (CSE) Student,

*2
 Associate Professor,

*3
 Professor & HOD

Department of CSE

Godavari Institute of Engineering and Technology (GIET),

Rajahmundry, AP, India.

Abstract

A wireless sensor network consists of

spatially distributed autonomous sensors to physical

or environmental conditions, such as temperature,

sound, pressure, etc. and to cooperatively pass their

data through the network to main location. When the

data transmission between one node to another, there

is some of the nodes in the network are failed,

because of above mentioned issues. So, the data will

not be transferred to the destination. Because of

these failures of nodes the network is divided into

multiple parts. The ability to detect the cuts by using

the source node and disconnected node of a wireless

sensor network will lead to the increase in the

lifetime of network. In this article we consider the

problem of detecting cuts by the remaining nodes of

a wireless sensor network. We propose an algorithm

that allows (i) every node to detect when the

connectivity to a specially designated node has been

lost, and (ii) one or more nodes (that are connected

to the special node after the cut) to detect the

occurrence of the cut. The algorithm is distributed

and asynchronous: every node needs to

communicate with only those nodes that are within

its communication range. The algorithm is based on

the iterative computation of a fictitious ―electrical

potential‖ of the nodes. The convergence rate of the

underlying iterative scheme is independent of the

size and structure of the network. We demonstrate

the effectiveness of the proposed algorithm through

simulations and a real hardware implementation.

Keywords:

Wireless networks, sensor networks,

network separation, detection and estimation,

iterative computation

1. Introduction

A wireless sensor network is a collection

of nodes organized into a network such that each

node having sensing and processing capabilities.

Each node has an RF transceiver, sensor, memory,

powered by battery. Nowadays sensors are widely

employed in various research fields since they can

monitor temperature and hence whether forecasting

can be made easier. They are randomly deployed in

areas with sensors attached according to the

applications for which they are being used. Since

they are being powered up by batteries, energy

consumption should be minimized in order to

prolong the life of sensor nodes. In a network,

sensor nodes communicate with each other so that

results are obtained as part of their cooperatively

combined work. Since each node needs to

communicate with all the other nodes, wireless links

are established between them. A cut is defined as the

failure of node. It can separate the network into

disconnected paths incapable of communicating

with each other. Since they are randomly deployed,

loss of connectivity can be quite disastrous as they

will lead to the breakdown of entire network.

Shiva et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 533

Fig. 1 A wireless sensor network showing

network connectivity and cut vertices

Wireless sensor networks (WSNs) are a

promising technology for monitoring large regions

at high spatial and temporal resolution. However,

the small size and low cost of the nodes that makes

them attractive for widespread deployment also

causes the disadvantage of low operational

reliability. The node may fail due to different

problems. In fact, node failure is expected to be

quite common due to the typically limited energy

budget of the nodes that are powered by small

batteries. Failure of a set of nodes will reduce the

number of multi hop paths in the network. Such

failures cause a subset of nodes—that have not

failed—to become disconnected from the rest,

resulting in a‖cut‖.

We consider the problem of detecting cuts

by the nodes of a wireless sensor network. May

source node is a base station serves as an interface

between the network and its users. So, cut may or

may not separate a node from the source node, when

a node is disconnected from the source is u, when a

cut occurs in the network that does not separate a

node u from the source node, we say that these

nodes are connected, but a cut occurred somewhere

(CCOS) event has occurred for u. By cut detection

we mean 1) detection by each node of DOS event

when it occurs, and 2) detection of CCOS events by

the nodes close to a cut, and the approximate

location of the cut.

Nodes that detect the occurrence and

approximation locations of the cuts can then alert the

source node or the base station. if a node having the

ability to detect the cut, it could simply wait for the

network to be repaired and eventually reconnected,

so it saves the energy of the multiple nodes after cut.

To see the benefits of a cut detection

capability, imagine that a sensor that wants to send

data to the source node has been disconnected from

the source node. Without the knowledge of the

network’s disconnected state, it may simply forward

the data to the next node in the routing tree, which

will do the same to its next node, and so on.

However, this message passing merely wastes

precious energy of the nodes; the cut prevents the

data from reaching the destination. Therefore, on

one hand, if a node were able to detect the

occurrence of a cut, it could simply wait for the

network to be repaired and eventually reconnected,

which saves onboard energy of multiple nodes and

prolongs their lives.

On the other hand, the ability of the source

node to detect the occurrence and location of a cut

will allow it to undertake network repair. Thus, the

ability to detect cuts by both the disconnected nodes

and the source node will lead to the increase in the

operational lifetime of the network as a whole. A

method of repairing a disconnected network by

using mobile nodes has been proposed in

Algorithms for detecting cuts, as the one proposed

here, can serve as useful tools for such network [1].

k repairing methods. A review of prior work on cut

detection in sensor networks, e.g. [2], [3], [4] and

others, is included in the Supplementary Material.

In this paper we propose a distributed

algorithm to detect cuts, named the Distributed Cut

Detection (DCD) algorithm. The algorithm allows

each node to detect DOS events and a subset of

nodes to detect CCOS events. The algorithm we

propose is distributed and asynchronous: it involves

only local communication between nodes, and is

robust to temporary communication failure between

node pairs. A key component of the DCD algorithm

is a distributed iterative computational step through

which nodes compute their electrical potentials. The

convergence rate of the computation is independent

of the size and structure of the network.

Shiva et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 534

2. Problem Statement

Consider a sensor network modeled as a

undirected graph G=(V,E), whose node set V

represents the sensor nodes and the edge set E

consists of pair of nodes (u, v) such that nodes u and

v can exchange messages between each other. Note

that we assume inter-node communication is

symmetric. An edge (u, v) is said to be incident on

both the u and v. The nodes that share an edge with

a particular node u are called the neighbors of u. A

cut is the failure of a set of nodes Vcut from G

results in G being divided into multiple connected

components [6]. Recall that an undirected graph is

said to be connected if there is a way to go from

every node to every other node by traversing the

edges, and that a component Gc of a graph G is a

maximal connected sub graph of G. We are

interested in devising a way to detect if a subset of

the nodes has been disconnected from a

distinguished node, which we call the source node,

due to the occurrence of a cut.

3. Distributed Cut Detection

The algorithm is based on an electrical

analogy. Given an undirected graph G = (V, E) with,

say, n nodes m edges that describes the sensor

network, this algorithm is used for the nodes which

is disconnected from the source node. We construct

the graph Gelec = (Velec , Eelec) where Velec =V U

Vfict, where Vfict consists of n - 1 nodes, one node for

every node in V except the source node, and V is

connected to it fictitious node in Vfict with a single

edge.

In this algorithm we are having two

phases. One is state update law, it works very

efficient to calculate the node potentials in electrical

network (Gelec,1) when s Ampere current is injected

to the source node and extracted to the nodes Vfict,

with all nodes in V . The other phase of the

algorithm consists of monitoring the state of a node,

it is used to detect the cut occurred. Now we

describe about the each phase.

I. State Update Law

The nodes use the computed potentials to

detect if DOS events have occurred (ie. if they are

disconnected from the source node). To detect

CCOS events, the algorithm uses the fact that the

potentials of the nodes that are connected to the

source node also change after the cut. CCOS

detection proceeds by using probe messages that are

initiated by certain nodes that encounter failed

neighbors, if a short path exists around a ―hole‖

created by node failures, the message will reach the

initiating node.

Fig. 2. A graph describing a sensor network and

associated electrical network.

Every node keeps a scalar variable, which

is called a state Let G (k) = (V (k), E (k)) represent

the sensor network that consists of all the nodes and

edges of G that are still active at time k, where k=| 0,

1, 2… Is an iteration counter. We index the source

node as 1. Every node u maintains a scalar state

xu(k) that is updated. At every iteration k, nodes

broadcast their current states. Let Nu(k) = {v|(u,v) €

E(k)} denote the set of neighbors of u in the graph

G(k). Every node in V except the source node

Shiva et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 535

updates the following state law. Where strength is

design parameter:

Where di(k) := | Ni(k) | is the degree of

node i at time k, and 1A(i) is the indicator function

of the set A. That is, 1{1} (i) = 1 if i=1, and 1{1}(i)

= 0 if i=1 and. After that, i can update its neighbor

list Ni(k) as follows: if no messages have been

received from a neighboring node for the past Tdrop

iterations, node i drops that node from list of

neighbors. The integer parameter Tdrop is a design

choice.

When the network is connected, the state

of a node converges to its potential in the electrical

network (Gelec ,1), which is a positive number. The

potential of a node that is disconnected from the

source is 0; this is the value converges to 0. If the

reconnection occurs after a cut, the states of

reconnected nodes again converge to positive

values. Especially with wireless communication an

asynchronous update is preferable.

Fig. 3. Examples of cuts and holes. Filled circles

represent active nodes and unfilled filled circles

represent failed nodes. Solid lines represent edges,

and dashed lines represent edges that existed before

the failure of the nodes. The hole in (d) is

indistinguishable from the cut in (b) to nodes that lie

outside the region R.

II. State monitoring for cut detection

Theorem 1 shows how the occurrence of a

cut in the Network is manifested in the states of the

nodes. By analyzing their own states, nodes can

detect if a cut has occurred.

Suppose a cut occurs at some time τ > 0

which separates the network into n components

Gsource, G2. . .Gn, the component Gsource

containing the source node. Since there is no source

(and therefore no current injection) in each of the

components G2. . . Gn disconnected from the

source, it follows from Theorem 1 that the state of

every node in each of these components will

converge to zero. When the potential at a particular

node drops below a particular threshold value, the

node can declare itself cut from the source node. In

fact, there may be additional node failures (and even

increase in the number of components) after the cut

appears. Since the state of a node converges to 0 if

there is no path to the source, additional time

variation in the network will not affect cut detection.

If additional failures do not occur after the cut

occurs, it follows from Theorem 1 that the states of

the nodes that are in the component Gsource (which

contains the source) will converge to new steady

state values. So, if a node detects that its state has

converged to a steady state, then changed, and then

again converged to a new steady state value that is

different from the initially seen steady state, it

concludes that there has been a cut somewhere in the

network. A node detects when steady state is

reached by comparing the derivative of its state

(with respect to time) with a small number ǫ that is

provided a-priori. The parameters s and ǫ are design

variables. It updates its state from that neighbor, in

the asynchronous setting every node keeps a local

iteration counter that may differ from those of other

nodes by arbitrary amount.

 Fig. 4. G (k) for k>100

Shiva et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 536

The source node is at the center. The

nodes 3b fail at k = 100, and thereafter they do not

participate in communication or computation. Figs.

The state of a node u decays to 0 after reaching a

positive value, where the state of node v says

positive.

4. Distributed Cut Detection

Algorithm
The Distributed Cut Detection Algorithm

is shown as follows:

A) Dos Detection

We say that a Disconnected from Source

(DOS) event has occurred for u. The algorithm

allows each node to detect DOS events. The nodes

use the computed potentials to detect if DOS events

have occurred (i.e., if they are disconnected from the

source node). The approach here is to exploit the

fact that if the state is close to 0 then the node is

disconnected from the source, otherwise not. In

order to reduce sensitivity of the algorithm to

variations in network size and structure, we use a

normalized state.DOS detection part consists of

steady-state detection, normalized state computation,

and connection/separation detection. A node keeps

track of the positive steady states seen in the past

using the following method. Each node i computes

the normalized state difference δxi (K) as follows:

Where €zero is a small positive number. A

node i keeps a Boolean variable Positive Steady

State Reached (PSSR) and updates PSSR (k) ← 1 if

| δxi (K) | < €∆x for K = k – Tguard ,k − Tguard

+1,…,k(i.e., for Tguard consecutive iterations),where

€∆x is a small positive number and Tguard is a Small

integer. The initial 0 value of the state is not

considered a steady state, so PSSR (k)=0 for k =0,1,

…,Tguard.

B) CCOS Detection

The algorithm for detecting CCOS events

relies on finding a short path around a hole, if it

exists, and is partially inspired by the jamming

detection algorithm proposed in [5]. When a cut

occurs in the network that does not separate a node u

from the source node, we say that Connected, but a

Cut Occurred Somewhere (CCOS) event has

occurred for u. detection of CCOS events by the

nodes close to a cut, and the approximate location of

the cut. By ―approximate location‖ of a cut we mean

the location of one or more active nodes that lie at

the boundary of the cut and that are connected to the

source. To detect CCOS events, the algorithm uses

the fact that the potentials of the nodes that are

connected to the source node also change after the

cut. However, a change in a node’s potential is not

enough to detect CCOS events, since failure of

nodes that do not cause a cut also leads to changes in

the potentials of their neighbors. Therefore, CCOS

detection proceeds by using probe messages.

5. System Implementation

In this section, we describe the software

implementation and evaluation of the DCD

algorithm. In software the algorithm was

implemented using the java language running on

windows xp operating system. The system executes

in two phases: the Reliable Neighbor Discovery

(RND) phase and the DCD Algorithm phase. In the

RND phase each node is connected to the source

node. Upon receiving the message, the mote updates

the number of beacons received from that particular

sender.

To determine whether a communication

link is established, each mote first computes for each

of its neighbors the Packet Reception Ratio (PRR),

defined as the ratio of the number of successfully

received beacons and the total number of beacons

sent by a neighbor. A neighbor is deemed reliable if

the PRR >0:8. Next, the DCD algorithm executes.

After receiving state information from neighbors, a

node updates its state according to (1) in an

asynchronous manner and broadcasts its new state.

The state is stored in the database.

Shiva et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 537

6. Conclusion

The DCD algorithm we propose here

enables every node of a wireless sensor network to

detect Disconnected from Source events if they

occur. Second, it enables a subset of nodes that

experience CCOS events to detect them and estimate

the approximate location of the cut in the form of a

list of active nodes that lie at the boundary of the

cut/hole. The DOS and CCOS events are defined

with respect to a specially designated source node.

The algorithm works effectively with large classes

of graphs of varying size and structure, without

requiring changes in the parameters. For certain

scenarios, the algorithm is assured to detect

connection and disconnection to the source node

without error. A key strength of the DCD algorithm

is that the convergence rate of the underlying

iterative scheme is quite fast and independent of the

size and structure of the network, which makes

detection using this algorithm quite fast application

of the DCD algorithm to detect node separation and

reconnection to the source in mobile networks is a

topic of ongoing research.

7. References

[1] G. Dini, M. Pelagatti, and I. M. Savino, ―An algorithm

for reconnecting wireless sensor network partitions,‖ in
European Conference on Wireless Sensor Networks, 2008,

pp. 253–267.

[2] N. Shrivastava, S. Suri, and C. D. T´oth, ―Detecting

cuts in sensor networks,‖ ACM Trans. Sen. Netw., vol. 4,

no. 2, pp. 1–25, 2008.

[3] H. Ritter, R. Winter, and J. Schiller, ―A partition

detection system for mobile ad-hoc networks,‖ in First
Annual IEEE Communications Society Conference on

Sensor and Ad Hoc Communications and Networks (IEEE

SECON 2004), Oct. 2004, pp. 489–497.

[4] M. Hauspie, J. Carle, and D. Simplot, ―Partition

detection in mobile ad-hoc networks,‖ in 2nd
Mediterranean Workshop on Ad- Hoc Networks, 2003, pp.

25–27.

[5] A. D. Wood, J. A. Stankovic, and S. H. Son, ―Jam: A

jammed-area mapping service for sensor networks,‖ in
IEEE Real Time System Symposium, 2003.

[6] P. Barooah, ―Distributed cut detection in sensor
networks,‖ in 47th IEEE Conference on Decision and

Control, December 2008, pp. 1097 – 1102.

[7] A.D. Wood, J.A. Stankovic, and S.H. Son, ―Jam: A

Jammed-Area Mapping Service for Sensor Networks,‖

Proc. IEEE Real Time Systems Symp., 2003. International
Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012 ISSN: 2278-0181.

[8] G. H. Golub and C. F. van Loan, Matrix Computations,

3rd ed. The John Hopkins University Press, 1996.

[9] F. Chung, ―Spectral graph theory,‖ Regional

Conference Series in Mathematics, Providence, R.I., 1997.

[10] A. Jadbabaie, J. Lin, and A. S. Morse, ―Coordination

of groups of mobile autonomous agents using nearest

Neighbor rules,‖ IEEE Transactions on Automatic Control,
vol. 48, no. 6, pp. 988–1001, June 2003.

8. About the Authors

Shiva Kumar Rameswarapu

is currently

pursuing his M.Tech (CSE) in Computer

Science & Engineering Department, GIET,

Rajahmundry. His area of interests includes

Networks

Dr.M.V.Rama Sundari

is currently working

as an Associate Professor in Department of IT,

GIET, Rajahmundry. She was awarded with

PhD in related field. Her research interests

include Communications Networks.

Dr. S. Maruthu Perumal is currently working

as a Head of the Department for Computer

Science & Engineering Department, GIET,

Rajahmundry. He is awarded with PhD in

related field. His research interests include

Image Processing, Data Mining &

Warehousing, Networks and Security,

Software Engineering.

