
Ravi / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 508

A Genetic Algorithm Based University Course Timetabling

Method by Using Guided and Local Search Strategies

Ravi Teja CH
#1

,
#1

M.Tech Scholar

Department of Computer Science & Engineering,

University College Of Engineering,Vizianagaram ,JNTUK

Vizianagaram Dist,AP,India.

Abstract

University course timetabling is one of

the important and time consuming issues that

each University is involved with it at the

beginning of each. The university course

timetabling problem (UCTP) is a combinatorial

optimization problem, in which a set of events

has to be scheduled into time slots and located

into suitable rooms. The design of course

timetables for academic institutions is a very

difficult task because it is an NP-hard problem.

There are also a number of hard and soft

constraints that must be observed while solving

this problem, which makes the solution algorithm

a challenge for researchers. This paper proposes

a genetic algorithm with a guided search strategy

and a local search technique for the university

course timetabling problem. The guided search

strategy is used to create offspring into the

population based on a data structure that stores

information extracted from previous good

individuals. The local search technique is used to

improve the quality of individuals. The proposed

genetic algorithm is tested on a set of benchmark

problems in comparison with a set of state-of-the-

art methods from the literature. The

experimental results show that the proposed

genetic algorithm is able to produce promising

results for the university course timetabling

problem.

Keywords:
Genetic algorithm (GA), guided search,

local search (LS), university course timetabling

problem (UCTP).

1. Introduction

The timetabling problem is an important

practical problem that is frequently encountered in

educational institutions, such as schools and

universities. The timetabling problem has received

special attention from the scientific community in

the last few decades. This is mainly due to the fact

that manual generation of timetables is very time

consuming and the resulting timetables are usually

inefficient and may be costly in terms of money and

resources. The interest in timetabling algorithms

resulted in the creation of the PATAT series of

conferences (Practice and Theory of Automated

Timetabling), which sponsors the International

Timetabling Competition (ITC). The aim of this

competition is to encourage research in the

university timetabling domain and bridge the gap

between theory and practice, for a better utilization

of research techniques in real-world applications.

Timetabling is one of the common

scheduling problems, which can be described as the

allocating of resources for factors under predefined

constraints so that it maximizes the possibility of

allocation or minimizes the violation of constraints

[1]. Timetabling problems are often complicated by

the details of a particular timetabling task. A general

algorithm approach to a problem may turn out to be

incapable, because of certain special constraints

required in a particular instance of that problem. In

the university course timetabling problem (UCTP),

events (subjects, courses) have to be set into a

number of time slots and rooms while satisfying

various constraints. Timetabling has become much

more difficult to find the general and effective

solution due to the diversity of the problem, the

Ravi / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 509

variance of constraints, and particular requirements

from university to university according to the

characteristics. There is no known deterministic

polynomial time algorithm for the UCTP. That is,

the UCTP is an NP-hard combinatorial optimisation

problem [2].

The research on timetabling problems has

a long history. Over the last forty years, researchers

have proposed various timetabling approaches by

using constraint-based methods, population-based

approaches (e.g., genetic algorithms (GAs), ant

colony optimization, and memetic algorithms),

meta-heuristic methods (e.g., tabu search, simulated

annealing, and great deluge), variable

neighbourhood search (VNS), and hybrid and hyper-

heuristic approaches etc. A comprehensive review

on timetabling can be found in [3,4] and recent

research directions in timetabling are described in

[5].Several researchers have used GAs to solve

course timetabling problems [6].Rossi-Doria et al.

[7] compared different meta-heuristics to solve the

course timetabling problem. They concluded that

conventional GAs do not give good results among a

number of approaches developed for the UCTP.

Hence, conventional GAs need to be enhanced to

solve the UCTP.

 In this paper, a guided search genetic

algorithm, denoted GSGA, is proposed for solving

the UCTP, which consists of a guided search

strategy and a local search technique. GAs rely on a

population of candidate solutions. If there is a good

population, then chances increase to create a feasible

and optimal solution. In GSGA, a guided search

strategy is used to create offspring into the

population based on an extra data structure. This

data structure is constructed from the best

individuals from the population and hence stores

useful information that can be used to guide the

generation of good offspring into the next

population. In GSGA, a local search technique is

also used to improve the quality of individuals

through searching in three kinds of neighbourhood

structures. In order to test the performance of the

proposed GSGA, experiments are carried out on a

set of benchmark problems in comparison with a set

of state-of-the-art methods from the literature.

2. Related Work
Several algorithms have been introduced

to solve timetabling problems. The earliest set of

algorithms is based on graph coloring heuristics.

These algorithms show a great efficiency in small

instances of timetabling problems, but are not

efficient in large instances. Later, stochastic search

methods, such as GAs, SA, TS, etc., were

introduced to solve timetabling problems.

A Genetic Algorithm (GA) is a famous

optimization tool in computer science. It is an

intelligent search method that is inspired from

biological evolution and survival of the fittest. It

operates on a population of solutions, allocating

trials to promising areas of the search space. A GA

does not depend heavily on the information

available from the underlying problem, and it can be

easily hybridized to generate knowledge-augmented

GA. Using the operations of selection of the fittest,

mutation, and crossover, GAs can quickly reach fit

individuals (not always the most fit), but who are

usually good enough as solutions to problems of a

large magnitude. Crossover is considered as the

main GA operator, which requires combining two

solutions, while the mutation operator performs

some small random change on a single solution.

Therefore, designing an appropriate crossover

operator is often more challenging than developing a

mutation operator or a simple neighborhood move.

This usually makes GAs implementation

more difficult compared to other heuristic or meta-

heuristic techniques that gradually improve only one

problem solution. Using a GA to solve scheduling

and timetabling problems is attractive for

researchers in the heuristic and meta-heuristic field,

since GAs usually performs well in a variety of hard

combinatorial optimization problems. For more

information about genetic algorithms, the reader is

referred to the book of Goldberg.

3. The University Course

Timetabling Problem

According to Carter and Laporte [3], the

UCTP is a multi-dimensional assignment problem,

in which students and teachers (or faculty members)

are assigned to courses, course sections or classes

Ravi / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 510

and events (individual meetings between students

and teachers) are assigned to classrooms and time

slots.

In a UCTP, we assign an event (courses,

lectures) into a time slot and also assign a number of

resources (students, rooms) in such a way that there

is no conflict between the rooms, time slots and

events. As mentioned by Rossi-Doria et al. [8], the

UCTP problem consists of a set of n events (classes,

subjects) E = {e1, e2, ..., en} to be scheduled in a set

of 45 time slots T = {t1, t2, ..., t45} (i.e., nine for

each day in a five day week), a set of m available

rooms R = {r1, r2, ..., rm} in which events can take

place, a set of k students S ={s1, s2, ..., sk} who

attend the events and a set of l available features F =

{f1, f2, ..., fl} that are satisfied by rooms and

required by each event.

In addition, interrelationships between

these sets are given by five matrices. The first matrix

shows which event is attended by which students.

The second matrix indicates whether two events can

be scheduled in the same time slot or not. The third

matrix gives the features. that each room possesses.

The fourth matrix gives the features required by

each event. The last matrix lists the possible rooms

to which each event can be assigned.

Usually, a matrix is used for assigning

each event to a room ri and a time slot ti. Each pair

of (ri, ti) is assigned a particular number

corresponding to an event. If a room ri in a time slot

ti is free or no event is placed then “-1” is assigned

to that pair. In this way we assure that there will be

no more than one event assigned to the same pair so

that one of the hard constraints will always been

satisfied.

For the room assignment we use a

matching algorithm described by Rossi-Doria [7].

For every time slot, there is a list of events taking

place in it and a preprocessed list of possible rooms

to which the placement of events can be occurred.

The matching algorithm uses a deterministic

network flow algorithm and gives the maximum

cardinality matching between rooms and events. In

general, the solution to a UCTP can be represented

in the form of an ordered list of pairs (ri, ti), of

which the index of each pair is the identification

number of an event ei € E (i = 1, 2, · · · , n). For

example, the time slots and rooms are allocated to

events in an ordered list of pairs like:

 (2, 4), (3, 30), (1, 12), · · · , (2, 7),

Where time slot 4 and room 2 are allocated to event

1, time slot 30 and room 3 are allocated to event 2,

and so on.

The real world UCTP consists of different

constraints: some are hard constraints and some are

soft constraints. Hard constraints must not be

violated under any circumstances, e.g. students

cannot attend two classes at the same time. Soft

constraints should preferably be satisfied, but can be

accepted with a penalty associated to their violation,

e.g. students should not attend more than two classes

in a row. In this paper, we will test our proposed

algorithm on the problem instances discussed in [7].

We deal with the following hard constraints:

– No student attends more than one events at the

same time.

– The room is big enough for all the attending

students and satisfies all the features required by the

event.

– Only one event is in a room at any time slot.

There are also soft constraints which are penalized

equally by their occurrences:

– A student has a class in the last time slot of a day.

– A student has more than two classes in a row.

– A student has a single class on a day.

The goal of the UCTP is to minimize the soft

constraint violations of a feasible solution (a feasible

solution means that no hard constraint violation

exists in the solution). The objective function f(s) for

a timetable s is the weighted sum of the number of

hard-constraint violations #hcv and soft-constraint

violations #scv, which was used in [8], as defined

below:

 f(s):= #hcv(s)* C + #scv(s) (1)

 Where C is a constant, which is larger than

the maximum possible number of soft-constraint

violations.

Ravi / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 511

4. The Guided Search Genetic

Algorithm
GAs are a class of powerful general purpose

optimisation tools that model the principles of

natural evolution. GAs has been used for timetabling

since 1990. Since then, there are a number of papers

investigating and applying GA methods for the

UCTP [3].
 In this paper, we propose an optimization

method based on GAs that incorporates a guided

search strategy and a local search operator for the

UCTP. The pseudocode of the proposed guided

search GA for the UCTP is shown in Algorithm 1.

Algorithm 1 The Guided Search Genetic

Algorithm (GSGA)

1: input: A problem instance I

2: set the generation counter g: = 0

{Initialize a random population}

3: for i: = 1 to population size do

4: si create a random solution

5: si solution si after applying LocalSearch()

6: end for

7: while the termination condition is not reached do

8: if (g mod _) == 0 then

9: apply ConstructMEM () to construct the data

structure MEM

10: end if

11: s child solution generated by applying

GuidedSearchByMEM() or the crossover operator

with a probability

12: s child solution after mutation with a probability

Pm

13: s child solution after applying LocalSearch()

14: replace the worst member of the population by

the child solution s

15: g := g + 1

16: end while

17: output: The best achieved solution sbest for the

problem instance I

The basic framework of GSGA is a steady

state GA, where only one child solution is generated

per iteration/generation. In GSGA, we first initialize

the population by randomly creating each individual

via assigning a random time slot for each event

according to a uniform distribution and applying the

matching algorithm to allocate a room for the event.

Then, a local search (LS) method as used in [9] is

applied to each member of the initial population.

The LS method uses three neighbourhood structures,

which will be described in section 4.4, to move

events to time slots and then uses the matching

algorithm to allocate rooms to events and time slots.

After the initialization of the population, a data

structure (denoted MEM in this paper) is

constructed, which stores a list of room and time slot

pairs (r, t) for all the events with zero penalty (no

hard and soft violation at this event) of selected

individuals from the population. After that this

MEM can be used to guide the generation of

offspring for the following generations. The MEM

data structure is reconstructed regularly, e.g., every τ

generations.

In each generation of GSGA, one child is

first generated either by using MEM or by applying

the crossover operator, depending on a probability.

After that, the child will be improved by a mutation

operator followed by the LS method. Finally, the

worst member in the population is replaced with the

newly generated child individual. The iteration

continues until one termination condition is reached,

e.g., a preset time limit t max is reached.

In the following sub-sections, we will

describe in details the key components of GSGA

respectively, including the MEM data structure and

its construction, the guided search strategy, the

mutation operator, and the local search method.

4.1 The MEM Data Structure

There have been a number of researches in

the literature on using extra data structure or

memory to store useful information in order to

enhance the performance of GAs and other meta-

heuristic methods for optimization and search [10].

In GSGA, we also use a data structure to guide the

generation of offspring. Fig. 1 shows the details of

the MEM data structure, which is a list of events and

each event ei has again a list lei of room and time

slot pairs. In Fig. 1, Ni represents the total number

of pairs in the list lei.

Ravi / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 512

The MEM data structure is regularly

reconstructed every τ generations. Algorithm 2

shows the outline of constructing MEM. When

MEM is due to be reconstructed, we first select α

best individuals from the population P to form a set

Q. After that, for each individual Ij € Q, each event

is checked by its penalty value (Hard and soft

constraints associated with this event). If an event

has a zero penalty value, then we store the

information corresponding to this event into MEM.

 Fig. 1 Illustration of the data structure MEM.

Algorithm 2 ConstructMEM() – Constructing the

data structure MEM

1: input: The whole population P

2: sort the population P according to the fitness of

individuals

3: Q select the best _ individuals in P

4: for each individual Ij in Q do

5: for each event ei in Ij do

6: calculate the penalty value of event ei from Ij

7: if ei is feasible (i.e., ei has zero penalty) then

8: add the pair of room and time slot (rei , tei)

assigned to ei into the list lei

9: end if

10: end for

11: end for

12: output: The data structure MEM

For example, if the event e2 of an

individual Ij € Q is assigned room 2 at time slot 13

and has a zero penalty value, then we add the pair

(2, 13) into the list le2 . Similarly, the events of the

next individual Ij+1 2 Q are also checked by their

penalty values. If the event e2 in Ij+1 has a zero

penalty, then we add the pair of room and time slot

assigned to e2 in Ij+1 into the existing list le2 . If for

an event ei, there is no a list lei existing yet, then the

list lei is added into the MEM data structure. Similar

process is carried out for the selected Q individuals

and finally the MEM data structure stores pairs of

room and time slot corresponding to those events

with zero penalty of the best individuals of the

current population.

Algorithm 3 GuidedSearchByMEM() –

Generating a child from MEM

1: input: TheMEM data structure

2: Es := randomly select β*n events

3: for each event ei in Es do

4: randomly select a pair of room and time slot from

the list lei

5: assign the selected pair to event ei for the child

6: end for

7: for each remaining event ei not in Es do

8: assign a random time slot and room to event ei

9: end for

10: output: A new child generated using the MEM

data structure

4.2 Generating a Child by the Guided

Search Strategy

In GSGA, a child is created through the

guided search by MEM or a crossover operator with

a probability τ. That is, when a new child is to be

generated, a random number p € [0.0, 1.0] is first

generated. If _ is less than, GuidedSearchByMEM()

(as shown in Algorithm 3) will be used to generate

the new child; otherwise, a crossover operation is

used to generate the new child. Below we first

describe the procedure of generating a child through

the guided search by MEM and then describe the

crossover operator.

If a child is to be created using the MEM

data structure, we first select a set Es of β * n

random events to be generated from MEM. After

that, for each event ei in Es, we randomly select a

pair of (rei , tei) from the list lei that corresponds to

the event ei and assign the selected pair to ei for the

child. If there is an event ei in Es but there is no the

list lei in MEM, then we randomly assign a room

Ravi / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 513

and time slot from possible rooms and time slots to

ei for the child. This process is carried out for all the

events in Es. For those remaining events that are not

present in Es, they are assigned random rooms and

time slots. If a child is to be generated using the

crossover operator, we first select two individuals

from the population as the parents by the tournament

selection of size 2. Then, we exchange the time slots

between the two parents and allocate rooms to

events in each non-empty time slot.

4.3 Mutation
After a child is generated by using either

MEM or crossover, a mutation operator is used with

a probability Pm. The mutation operator first

randomly selects one from three neighbourhood

structures N1, N2 and N3, which will be described

in Section 4.4, and then make a move within the

selected neighbourhood structure.

4.4 Local Search
After mutation, a local search (LS) method

is applied on the child solution for possible

improvement. Algorithm 4 summarizes the LS

scheme used in GSGA. LS works on all events.

Here, we suppose that each event is involved in soft

and hard constraint violations.

LS works in two steps and is based on

three neighbourhood structures, denoted as N1, N2,

and N3. They are described as follows:

– N1: the neighbourhood defined by an operator that

moves one event from a time slot to a different one

– N2: the neighbourhood defined by an operator that

swaps the time slots of two events

– N3: the neighbourhood defined by an operator that

permutes three events in three distinct time slots in

one of the two possible ways other than the existing

permutation of the three events.

 In the first step (line 2-12 in Algorithm 4),

LS checks the hard constraint violations of each

event while ignoring its soft constraint violations. If

there are hard constraint violations for an event, LS

tries to resolve them by applying moves in the

neighbourhood structures N1, N2, and N3 orderly1

until a termination condition is reached, e.g., an

improvement is reached or the maximum number of

steps smax is reached, which is set to different values

for different problem instances. After each move, we

apply the matching algorithm to the time slots

affected by the move and try to resolve the room

allocation disturbance and delta evaluate the result

of the move (i.e., calculate the hard and soft

constraint violations before and after the move).

Algorithm 4 LocalSearch() – Search the

neighbourhood for improvement

1: input : Individual I from the population

2: for i := 1 to n do

3: if event ei is infeasible then

4: if there is untried move left then

5: calculate the moves: first N1, then N2 if N1 fails,

and finally N3 if N1 and N2 fail

6: apply the matching algorithm to the time slots

affected by the move and delta evaluate the result.

7: if moves reduce hard constraints violation then

8: make the moves and go to line 3

9: end if

10: end if

11: end if

12: end for

13: if no any hard constraints remain then

14: for i := 1 to n do

15: if event i has soft constraint violation then

16: if there is untried move left then

17: calculate the moves: first N1, then N2 if N1

fails, and finally N3 if N1 and N2 fail

18: apply the matching algorithm to the time slots

affected by the move and delta evaluate the result

19: if moves reduce soft constraints violation then

20: make the moves and go to line 14

21: end if

22: end if

23: end if

24: end for

25: end if

26: output: A possibly improved individual I

If there is no untried move left in the neighbourhood

for an event, LS continues to the next event. After

applying all neighbourhood moves on each event, if

there is still any hard constraint violation, then LS

will stop; otherwise, LS will perform the second step

(lines 13-25 in Algorithm 4).

Ravi / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 514

In the second step, after reaching a

feasible solution, the LS method is used to deal with

soft constraints. LS performs a similar process as in

the first step on each event to reduce its soft

constraint violations. For each event, LS tries to

make moves in the neighbourhood N1, N2, and/or

N3 orderly without violating the hard constraints.

For each move, the matching algorithm is applied to

allocate rooms to affected events and the result is

delta-evaluated.

Table 1 Three groups of problem instances

When LS finishes, we get a possibly

improved and feasible individual. At the end of each

generation, the obtained child solution replaces the

worst member of the population to make a better

population in the next generation.

4.5 Extended GSGA

In this paper, we propose an extended

version of GSGA, denoted EGSGA, for the UCTP.

In EGSGA, a new LS scheme, denoted LS2 in this

paper and described in Algorithm 5, is introduced

and combined with LS1 for GSGA. In EGSGA, LS2

is used immediately after LS1 on random solutions

of the initial population as well as after a child is

created through crossover or the MEM data structure

and mutation The basic idea of LS2 is to choose a

high-penalty time slot that may have a large number

of events involving hard- and soft-constraint

violations and try to reduce the penalty values of

involved events.LS2 first randomly selects a preset

percentage of time slots3 (e.g., 20% as used in this

paper) from the total time slots of T. Then, it

calculates the penalty of each selected time slot4 and

chooses the worst time slot wt that has the biggest

penalty value for LS. After taking the worst time

slot, LS2 tries a move in the neighborhood N1 for

each event of wt and checks the penalty value of

each event before and after applying the move. If all

the moves in wt together reduce the hard- and/or

soft-constraint violations, then we apply the moves;

otherwise, we do not apply the moves. In this way,

LS2 can not only check the worst time slot, but also

reduce the penalty value for some events by moving

them to other time slots. In general, LS2 aims to

help in improving the solution obtained by LS1. LS2

is expected to enhance the individuals of the

population and increase the quality of the feasible

timetable by reducing the number of constraint

violations.

Algorithm 5: Local Search Scheme2 (LS2)

5. Conclusion
This paper presents a guided search

genetic algorithm, i.e., GSGA, to solve the

university course timetabling problem, where a

guided search strategy and a local search technique

are integrated into a steady state genetic algorithm.

The guided search strategy uses a data structure to

store useful information, i.e., a list of room and time

slot pairs for each event that is extracted from the

best individuals selected from the population and

has a zero penalty value. This data structure is used

to guide the generation of offspring into the next

population. In GSGA, a local search technique is

also used to improve the quality of individuals

through searching three neighbourhood structures.

Ravi / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 515

To our knowledge this is the first such algorithm

aimed at this problem domain.

In order to test the performance of GSGA,

experiments are carried out based on a set of

benchmark problems to compare GSGA with a set

of state-of-the-art methods from the literature. The

experimental results show that the proposed GSGA

is competitive and work reasonably well across all

problem instances in comparison with other

approaches studied in the literature. With the help of

the guided search strategy, GSGA is capable of

finding (near) optimal solutions for the university

course timetabling problem and hence can act as a

powerful tool for the UCTP.

6. Future Work

Future work includes further analysis of

the contribution of individual components (local

search and guided search) toward the performance

of GSGA. Improvement of genetic operators and

new neighbourhood techniques based on different

problem constraints will also be investigated. We

believe that the performance of GAs for the UCTP

can be improved by applying advanced genetic

operators and heuristics. The inter-relationship of

these techniques and a proper placement of these

techniques in a GA may lead to a better

performance.

7. References

[1]. N. D Thanh Solving timetabling problem using genetic

and heuristics algorithms Journal of Scheduling, 9(5): 403–

432, 2006.

[2]. S. Even, A. Itai, and A. Shamir. On the complexity of

timetable and multicommodity flow problems. SIAM

Journal on Computing, 5(4): 691–703, 1976.

[3]. M. W. Carter and G. Laporte. Recent developments in
practical course timetabling. Proc. of the 2nd Int. Conf. on

Practice and Theory of Automated Timetabling, LNCS

1408, pp. 3–19, 1998.

[4]. A. Schearf. A survey of automated timetabling.
Artificial Intelligence Review, 13(2): 87–127, 1999.

[5]. E. K. Burke and S. Petrovic. Recent research directions

in automated timetabling. European Journal of Operation
Research, 140(2): 266-280, 2002.

[6]. W. Erben,J. Keppler. A genetic algorithm solving a
weeklycourse timetabling problem. Proc. of the ist Int. onf.

on Practice and Theory of Automated Timetabling, LNCS

1153, pp. 198-211, 1995.

[7]. O. Rossi-Doria, M. Sampels, M. Birattari, M.

Chiarandini, M. Dorigo, L. Gambardella, J. Knowles, M.
Manfrin, M. Mastrolilli, B. Paechter, L. Paquete, and T.

St¨utzle. A comparison of the performance of different

metaheuristics on the timetabling problem. Lecture Notes

in Computer Science 2740, pp. 329–351,2002.

[8]. O. Rossi-Doria and B. Paechter. A memetic algorithm
for university course timetabling. Proceedings of

Combinatorial Optimization (CO 2004), pp. 56. 2004.

[9]. M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-

Doria. An effective hybrid algorithm for university course

timetabling. Journal of Scheduling, 9(5): 403–432, 2006.

[10]. A. Schearf. A survey of automated timetabling.

Artificial Intelligence Review, 13(2): 87–127, 1999.

8. About the Authors

Ravi Teja CH is currently pursuing his 2 Years

M.Tech (CSE) in Computer Science and

Engineering at University College of

Engineering, Vizianagaram JNTUK. His area

of interests includes Data Mining

