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Abstract  

 
University course timetabling is one of 

the important and time consuming issues that 

each University is involved with it at the 

beginning of each. The university course 

timetabling problem (UCTP) is a combinatorial 

optimization problem, in which a set of events 

has to be scheduled into time slots and located 

into suitable rooms. The design of course 

timetables for academic institutions is a very 

difficult task because it is an NP-hard problem. 

There are also a number of hard and soft 

constraints that must be observed while solving 

this problem, which makes the solution algorithm 

a challenge for researchers. This paper proposes 

a genetic algorithm with a guided search strategy 

and a local search technique for the university 

course timetabling problem. The guided search 

strategy is used to create offspring into the 

population based on a data structure that stores 

information extracted from previous good 

individuals. The local search technique is used to 

improve the quality of individuals. The proposed 

genetic algorithm is tested on a set of benchmark 

problems in comparison with a set of state-of-the-

art methods from the literature. The 

experimental results show that the proposed 

genetic algorithm is able to produce promising 

results for the university course timetabling 

problem. 

 

Keywords:   
Genetic algorithm (GA), guided search, 

local search (LS), university course timetabling 

problem (UCTP). 

1. Introduction  

 
The timetabling problem is an important 

practical problem that is frequently encountered in 

educational institutions, such as schools and 

universities. The timetabling problem has received 

special attention from the scientific community in 

the last few decades. This is mainly due to the fact 

that manual generation of timetables is very time 

consuming and the resulting timetables are usually 

inefficient and may be costly in terms of money and 

resources. The interest in timetabling algorithms 

resulted in the creation of the PATAT series of 

conferences (Practice and Theory of Automated 

Timetabling), which sponsors the International 

Timetabling Competition (ITC). The aim of this 

competition is to encourage research in the 

university timetabling domain and bridge the gap 

between theory and practice, for a better utilization 

of research techniques in real-world applications. 

 

Timetabling is one of the common 

scheduling problems, which can be described as the 

allocating of resources for factors under predefined 

constraints so that it maximizes the possibility of 

allocation or minimizes the violation of constraints 

[1]. Timetabling problems are often complicated by 

the details of a particular timetabling task. A general 

algorithm approach to a problem may turn out to be 

incapable, because of certain special constraints 

required in a particular instance of that problem. In 

the university course timetabling problem (UCTP), 

events (subjects, courses) have to be set into a 

number of time slots and rooms while satisfying   

various constraints. Timetabling has become much 

more difficult to find the general and effective 

solution due to the diversity of the problem, the 
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variance of constraints, and particular requirements 

from university to university according to the 

characteristics. There is no known deterministic 

polynomial time algorithm for the UCTP. That is, 

the UCTP is an NP-hard combinatorial optimisation 

problem [2]. 

 

The research on timetabling problems has 

a long history. Over the last forty years, researchers 

have proposed various timetabling approaches by 

using constraint-based methods, population-based 

approaches (e.g., genetic algorithms (GAs), ant 

colony optimization, and memetic algorithms), 

meta-heuristic methods (e.g., tabu search, simulated 

annealing, and great deluge), variable 

neighbourhood search (VNS), and hybrid and hyper-

heuristic approaches etc. A comprehensive review 

on timetabling can be found in [3,4] and recent 

research directions in timetabling are described in 

[5].Several researchers have used GAs to solve 

course timetabling problems [6].Rossi-Doria et al. 

[7] compared different meta-heuristics to solve the 

course timetabling problem. They concluded that 

conventional GAs do not give good results among a 

number of approaches developed for the UCTP. 

Hence, conventional GAs need to be enhanced to 

solve the UCTP. 

 

 In this paper, a guided search genetic 

algorithm, denoted GSGA, is proposed for solving 

the UCTP, which consists of a guided search 

strategy and a local search technique. GAs rely on a 

population of candidate solutions. If there is a good 

population, then chances increase to create a feasible 

and optimal solution. In GSGA, a guided search 

strategy is used to create offspring into the 

population based on an extra data structure. This 

data structure is constructed from the best 

individuals from the population and hence stores 

useful information that can be used to guide the 

generation of good offspring into the next 

population. In GSGA, a local search technique is 

also used to improve the quality of individuals 

through searching in three kinds of neighbourhood 

structures. In order to test the performance of the 

proposed GSGA, experiments are carried out on a 

set of benchmark problems in comparison with a set 

of state-of-the-art methods from the literature. 

 

2. Related Work 
Several algorithms have been introduced 

to solve timetabling problems. The earliest set of 

algorithms is based on graph coloring heuristics. 

These algorithms show a great efficiency in small 

instances of timetabling problems, but are not 

efficient in large instances. Later, stochastic search 

methods, such as GAs, SA, TS, etc., were 

introduced to solve timetabling problems. 

 

A Genetic Algorithm (GA) is a famous 

optimization tool in computer science. It is an 

intelligent search method that is inspired from 

biological evolution and survival of the fittest. It 

operates on a population of solutions, allocating 

trials to promising areas of the search space. A GA 

does not depend heavily on the information 

available from the underlying problem, and it can be 

easily hybridized to generate knowledge-augmented 

GA. Using the operations of selection of the fittest, 

mutation, and crossover, GAs can quickly reach fit 

individuals (not always the most fit), but who are 

usually good enough as solutions to problems of a 

large magnitude. Crossover is considered as the 

main GA operator, which requires combining two 

solutions, while the mutation operator performs 

some small random change on a single solution. 

Therefore, designing an appropriate crossover 

operator is often more challenging than developing a 

mutation operator or a simple neighborhood move.  

 

This usually makes GAs implementation 

more difficult compared to other heuristic or meta-

heuristic techniques that gradually improve only one 

problem solution. Using a GA to solve scheduling 

and timetabling problems is attractive for 

researchers in the heuristic and meta-heuristic field, 

since GAs usually performs well in a variety of hard 

combinatorial optimization problems. For more 

information about genetic algorithms, the reader is 

referred to the book of Goldberg. 

 

3. The University Course 

Timetabling Problem 
 

According to Carter and Laporte [3], the 

UCTP is a multi-dimensional assignment problem, 

in which students and teachers (or faculty members) 

are assigned to courses, course sections or classes 
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and events (individual meetings between students 

and teachers) are assigned to classrooms and time 

slots. 

In a UCTP, we assign an event (courses, 

lectures) into a time slot and also assign a number of 

resources (students, rooms) in such a way that there 

is no conflict between the rooms, time slots and 

events. As mentioned by Rossi-Doria et al. [8], the 

UCTP problem consists of a set of n events (classes, 

subjects) E = {e1, e2, ..., en} to be scheduled in a set 

of 45 time slots T = {t1, t2, ..., t45} (i.e., nine for 

each day in a five day week), a set of m available 

rooms R = {r1, r2, ..., rm} in which events can take 

place, a set of k students S ={s1, s2, ..., sk} who 

attend the events and a set of l available features F = 

{f1, f2, ..., fl} that are satisfied by rooms and 

required by each event. 

 

In addition, interrelationships between 

these sets are given by five matrices. The first matrix 

shows which event is attended by which students. 

The second matrix indicates whether two events can 

be scheduled in the same time slot or not. The third 

matrix gives the features. that each room possesses. 

The fourth matrix gives the features required by 

each event. The last matrix lists the possible rooms 

to which each event can be assigned. 

 

Usually, a matrix is used for assigning 

each event to a room ri and a time slot ti. Each pair 

of (ri, ti) is assigned a particular number 

corresponding to an event. If a room ri in a time slot 

ti is free or no event is placed then “-1” is assigned 

to that pair. In this way we assure that there will be 

no more than one event assigned to the same pair so 

that one of the hard constraints will always been 

satisfied. 

 

For the room assignment we use a 

matching algorithm described by Rossi-Doria [7]. 

For every time slot, there is a list of events taking 

place in it and a preprocessed list of possible rooms 

to which the placement of events can be occurred. 

The matching algorithm uses a deterministic 

network flow algorithm and gives the maximum 

cardinality matching between rooms and events. In 

general, the solution to a UCTP can be represented 

in the form of an ordered list of pairs (ri, ti), of 

which the index of each pair is the identification 

number of an event ei € E (i = 1, 2, · · · , n). For 

example, the time slots and rooms are allocated to 

events in an ordered list of pairs like: 

 

       (2, 4), (3, 30), (1, 12), · · · , (2, 7), 

 

Where time slot 4 and room 2 are allocated to event 

1, time slot 30 and room 3 are allocated to event 2, 

and so on. 

The real world UCTP consists of different 

constraints: some are hard constraints and some are 

soft constraints. Hard constraints must not be 

violated under any circumstances, e.g. students 

cannot attend two classes at the same time. Soft 

constraints should preferably be satisfied, but can be 

accepted with a penalty associated to their violation, 

e.g. students should not attend more than two classes 

in a row. In this paper, we will test our proposed 

algorithm on the problem instances discussed in [7]. 

We deal with the following hard constraints: 

 

– No student attends more than one events at the 

same time. 

– The room is big enough for all the attending 

students and satisfies all the features required by the 

event. 

– Only one event is in a room at any time slot. 

 

There are also soft constraints which are penalized 

equally by their occurrences:  

– A student has a class in the last time slot of a day. 

– A student has more than two classes in a row. 

– A student has a single class on a day. 

 

The goal of the UCTP is to minimize the soft 

constraint violations of a feasible solution (a feasible 

solution means that no hard constraint violation 

exists in the solution). The objective function f(s) for 

a timetable s is the weighted sum of the number of 

hard-constraint violations #hcv and soft-constraint 

violations #scv, which was used in [8], as defined 

below: 

             f(s):= #hcv(s)* C + #scv(s)                  (1) 

 

            Where C is a constant, which is larger than 

the maximum possible number of soft-constraint 

violations. 
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4.  The Guided Search Genetic 

Algorithm 
GAs are a class of powerful general purpose 

optimisation tools that model the principles of 

natural evolution. GAs has been used for timetabling 

since 1990. Since then, there are a number of papers 

investigating and applying GA methods for the 

UCTP [3]. 
 In this paper, we propose an optimization 

method based on GAs that incorporates a guided 

search strategy and a local search operator for the 

UCTP. The pseudocode of the proposed guided 

search GA for the UCTP is shown in Algorithm 1. 

 

 

Algorithm 1 The Guided Search Genetic 

Algorithm (GSGA) 
 

1: input: A problem instance I 

2: set the generation counter g: = 0 

{Initialize a random population} 

3: for i: = 1 to population size do 

4: si  create a random solution 

5: si  solution si after applying LocalSearch() 

6: end for 

7: while the termination condition is not reached do 

8: if (g mod _) == 0 then 

9: apply ConstructMEM () to construct the data 

structure MEM 

10: end if 

11: s   child solution generated by applying 

GuidedSearchByMEM() or the crossover operator 

with a probability  

12: s  child solution after mutation with a probability 

Pm 

13: s  child solution after applying LocalSearch() 

14: replace the worst member of the population by 

the child solution s 

15: g := g + 1 

16: end while 

17: output: The best achieved solution sbest for the 

problem instance I 

 

 
The basic framework of GSGA is a steady 

state GA, where only one child solution is generated 

per iteration/generation. In GSGA, we first initialize 

the population by randomly creating each individual 

via assigning a random time slot for each event 

according to a uniform distribution and applying the 

matching algorithm to allocate a room for the event. 

Then, a local search (LS) method as used in [9] is 

applied to each member of the initial population. 

The LS method uses three neighbourhood structures, 

which will be described in section 4.4, to move 

events to time slots and then uses the matching 

algorithm to allocate rooms to events and time slots. 

After the initialization of the population, a data 

structure (denoted MEM in this paper) is 

constructed, which stores a list of room and time slot 

pairs (r, t) for all the events with zero penalty (no 

hard and soft violation at this event) of selected 

individuals from the population. After that this 

MEM can be used to guide the generation of 

offspring for the following generations. The MEM 

data structure is reconstructed regularly, e.g., every τ 

generations. 

 

In each generation of GSGA, one child is 

first generated either by using MEM or by applying 

the crossover operator, depending on a probability. 

After that, the child will be improved by a mutation 

operator followed by the LS method. Finally, the 

worst member in the population is replaced with the 

newly generated child individual. The iteration 

continues until one termination condition is reached, 

e.g., a preset time limit t max   is reached. 

In the following sub-sections, we will 

describe in details the key components of GSGA 

respectively, including the MEM data structure and 

its construction, the guided search strategy, the 

mutation operator, and the local search method. 

 

4.1 The MEM Data Structure 
 

There have been a number of researches in 

the literature on using extra data structure or 

memory to store useful information in order to 

enhance the performance of GAs and other meta-

heuristic methods for optimization and search [10]. 

In GSGA, we also use a data structure to guide the 

generation of offspring. Fig. 1 shows the details of 

the MEM data structure, which is a list of events and 

each event ei has again a list lei of room and time 

slot pairs. In Fig. 1, Ni represents the total number 

of pairs in the list lei. 
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The MEM data structure is regularly 

reconstructed every τ generations. Algorithm 2 

shows the outline of constructing MEM. When 

MEM is due to be reconstructed, we first select α 

best individuals from the population P to form a set 

Q. After that, for each individual Ij € Q, each event 

is checked by its penalty value (Hard and soft 

constraints associated with this event). If an event 

has a zero penalty value, then we store the 

information corresponding to this event into MEM. 

 

       Fig. 1 Illustration of the data structure MEM. 

 

 

Algorithm 2 ConstructMEM() – Constructing the 

data structure MEM 

 

1: input: The whole population P 

2: sort the population P according to the fitness of 

individuals 

3: Q select the best _ individuals in P 

4: for each individual Ij in Q do 

5: for each event ei in Ij do 

6: calculate the penalty value of event ei from Ij 

7: if ei is feasible (i.e., ei has zero penalty) then 

8: add the pair of room and time slot (rei , tei) 

assigned to ei into the list lei 

9: end if 

10: end for 

11: end for 

12: output: The data structure MEM 

 

For example, if the event e2 of an 

individual Ij € Q is assigned room 2 at time slot 13 

and has a zero penalty value, then we add the pair 

(2, 13) into the list le2 . Similarly, the events of the 

next individual Ij+1 2 Q are also checked by their 

penalty values. If the event e2 in Ij+1 has a zero 

penalty, then we add the pair of room and time slot 

assigned to e2 in Ij+1 into the existing list le2 . If for 

an event ei, there is no a list lei existing yet, then the 

list lei is added into the MEM data structure. Similar 

process is carried out for the selected Q individuals 

and finally the MEM data structure stores pairs of 

room and time slot corresponding to those events 

with zero penalty of the best individuals of the 

current population. 

 

Algorithm 3 GuidedSearchByMEM() – 

Generating a child from MEM 

 
1: input: TheMEM data structure 

2: Es := randomly select β*n events 

3: for each event ei in Es do 

4: randomly select a pair of room and time slot from 

the list lei 

5: assign the selected pair to event ei for the child 

6: end for 

7: for each remaining event ei not in Es do 

8: assign a random time slot and room to event ei 

9: end for 

10: output: A new child generated using the MEM 

data structure 

 

 

4.2 Generating a Child by the Guided 

Search Strategy 
 

In GSGA, a child is created through the 

guided search by MEM or a crossover operator with 

a probability τ. That is, when a new child is to be 

generated, a random number p € [0.0, 1.0] is first 

generated. If _ is less than, GuidedSearchByMEM() 

(as shown in Algorithm 3) will be used to generate 

the new child; otherwise, a crossover operation is 

used to generate the new child. Below we first 

describe the procedure of generating a child through 

the guided search by MEM and then describe the 

crossover operator. 

If a child is to be created using the MEM 

data structure, we first select a set Es of β * n 

random events to be generated from MEM. After 

that, for each event ei in Es, we randomly select a 

pair of (rei , tei ) from the list lei that corresponds to 

the event ei and assign the selected pair to ei for the 

child. If there is an event ei in Es but there is no the 

list lei in MEM, then we randomly assign a room 
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and time slot from possible rooms and time slots to 

ei for the child. This process is carried out for all the 

events in Es. For those remaining events that are not 

present in Es, they are assigned random rooms and 

time slots. If a child is to be generated using the 

crossover operator, we first select two individuals 

from the population as the parents by the tournament 

selection of size 2. Then, we exchange the time slots 

between the two parents and allocate rooms to 

events in each non-empty time slot. 

 

4.3 Mutation 
After a child is generated by using either 

MEM or crossover, a mutation operator is used with 

a probability Pm. The mutation operator first 

randomly selects one from three neighbourhood 

structures N1, N2 and N3, which will be described 

in Section 4.4, and then make a move within the 

selected neighbourhood structure. 

 

4.4 Local Search 
After mutation, a local search (LS) method 

is applied on the child solution for possible 

improvement. Algorithm 4 summarizes the LS 

scheme used in GSGA. LS works on all events. 

Here, we suppose that each event is involved in soft 

and hard constraint violations. 

LS works in two steps and is based on 

three neighbourhood structures, denoted as N1, N2, 

and N3. They are described as follows: 

 

– N1: the neighbourhood defined by an operator that 

moves one event from a time slot to a different one 

 

– N2: the neighbourhood defined by an operator that 

swaps the time slots of two events 

 

– N3: the neighbourhood defined by an operator that 

permutes three events in three distinct time slots in 

one of the two possible ways other than the existing 

permutation of the three events. 

 

 In the first step (line 2-12 in Algorithm 4), 

LS checks the hard constraint violations of each 

event while ignoring its soft constraint violations. If 

there are hard constraint violations for an event, LS 

tries to resolve them by applying moves in the 

neighbourhood structures N1, N2, and N3 orderly1 

until a termination condition is reached, e.g., an 

improvement is reached or the maximum number of 

steps smax  is reached, which is set to different values 

for different problem instances. After each move, we 

apply the matching algorithm to the time slots 

affected by the move and try to resolve the room 

allocation disturbance and delta evaluate the result 

of the move (i.e., calculate the hard and soft 

constraint violations before and after the move).  

 

Algorithm 4 LocalSearch() – Search the 

neighbourhood for improvement 

 
1: input : Individual I from the population 

2: for i := 1 to n do 

3: if event ei is infeasible then 

4: if there is untried move left then 

5: calculate the moves: first N1, then N2 if N1 fails, 

and finally N3 if N1 and N2 fail 

6: apply the matching algorithm to the time slots 

affected by the move and delta evaluate the result. 

7: if moves reduce hard constraints violation then 

8: make the moves and go to line 3 

9: end if 

10: end if 

11: end if 

12: end for 

13: if no any hard constraints remain then 

14: for i := 1 to n do 

15: if event i has soft constraint violation then 

16: if there is untried move left then 

17: calculate the moves: first N1, then N2 if N1 

fails, and finally N3 if N1 and N2 fail 

18: apply the matching algorithm to the time slots 

affected by the move and delta evaluate the result 

19: if moves reduce soft constraints violation then 

20: make the moves and go to line 14 

21: end if 

22: end if 

23: end if 

24: end for 

25: end if 

26: output: A possibly improved individual I 

 

If there is no untried move left in the neighbourhood 

for an event, LS continues to the next event. After 

applying all neighbourhood moves on each event, if 

there is still any hard constraint violation, then LS 

will stop; otherwise, LS will perform the second step 

(lines 13-25 in Algorithm 4). 
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In the second step, after reaching a 

feasible solution, the LS method is used to deal with 

soft constraints. LS performs a similar process as in 

the first step on each event to reduce its soft 

constraint violations. For each event, LS tries to 

make moves in the neighbourhood N1, N2, and/or 

N3 orderly without violating the hard constraints. 

For each move, the matching algorithm is applied to 

allocate rooms to affected events and the result is 

delta-evaluated. 

 

Table 1 Three groups of problem instances 

 
 

When LS finishes, we get a possibly 

improved and feasible individual. At the end of each 

generation, the obtained child solution replaces the 

worst member of the population to make a better 

population in the next generation. 

 

4.5 Extended GSGA 
 

In this paper, we propose an extended 

version of GSGA, denoted EGSGA, for the UCTP. 

In EGSGA, a new LS scheme, denoted LS2 in this 

paper and described in Algorithm 5, is introduced 

and combined with LS1 for GSGA. In EGSGA, LS2 

is used immediately after LS1 on random solutions 

of the initial population as well as after a child is 

created through crossover or the MEM data structure 

and mutation The basic idea of LS2 is to choose a 

high-penalty time slot that may have a large number 

of events involving hard- and soft-constraint 

violations and try to reduce the penalty values of 

involved events.LS2 first randomly selects a preset 

percentage of time slots3 (e.g., 20% as used in this 

paper) from the total time slots of T. Then, it 

calculates the penalty of each selected time slot4 and 

chooses the worst time slot wt that has the biggest 

penalty value for LS. After taking the worst time 

slot, LS2 tries a move in the neighborhood N1 for 

each event of wt and checks the penalty value of 

each event before and after applying the move. If all 

the moves in wt together reduce the hard- and/or 

soft-constraint violations, then we apply the moves; 

otherwise, we do not apply the moves. In this way, 

LS2 can not only check the worst time slot, but also 

reduce the penalty value for some events by moving 

them to other time slots. In general, LS2 aims to 

help in improving the solution obtained by LS1. LS2 

is expected to enhance the individuals of the 

population and increase the quality of the feasible 

timetable by reducing the number of constraint 

violations. 

Algorithm 5: Local Search Scheme2 (LS2) 

 

 
 

5. Conclusion 
This paper presents a guided search 

genetic algorithm, i.e., GSGA, to solve the 

university course timetabling problem, where a 

guided search strategy and a local search technique 

are integrated into a steady state genetic algorithm. 

The guided search strategy uses a data structure to 

store useful information, i.e., a list of room and time 

slot pairs for each event that is extracted from the 

best individuals selected from the population and 

has a zero penalty value. This data structure is used 

to guide the generation of offspring into the next 

population. In GSGA, a local search technique is 

also used to improve the quality of individuals 

through searching three neighbourhood structures. 
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To our knowledge this is the first such algorithm 

aimed at this problem domain. 

 

In order to test the performance of GSGA, 

experiments are carried out based on a set of 

benchmark problems to compare GSGA with a set 

of state-of-the-art methods from the literature. The 

experimental results show that the proposed GSGA 

is competitive and work reasonably well across all 

problem instances in comparison with other 

approaches studied in the literature. With the help of 

the guided search strategy, GSGA is capable of 

finding (near) optimal solutions for the university 

course timetabling problem and hence can act as a 

powerful tool for the UCTP. 

 

6. Future Work 
 

Future work includes further analysis of 

the contribution of individual components (local 

search and guided search) toward the performance 

of GSGA. Improvement of genetic operators and 

new neighbourhood techniques based on different 

problem constraints will also be investigated. We 

believe that the performance of GAs for the UCTP 

can be improved by applying advanced genetic 

operators and heuristics. The inter-relationship of 

these techniques and a proper placement of these 

techniques in a GA may lead to a better 

performance. 
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