

 Page | 1

“Feasibility of effectuating Resource Restitution in
QNX real time systems for Priority Inversion”

Mr. Atul Anilkumar Kumbhar, Prof. D G Chougule, Asst. Prof. Amrita Manjrekar

Master of Technology (Computer Science and Technology), Department of Technology,Shivaji University, Kolhapur.
 Email: atulkumbhar@aol.in,atul@claysol.com

Department of Technology,Shivaji University, Kolhapur.
Email: dgchougule@yahoo.com

Department of Computer Science and Technology, Department of Technology, Shivaji University, Kolhapur.
Email: amrita5551@gmail.com, aam_tech@unishivaji.ac.in

Abstract :

Priority inversion is where a lower priority
process gets a hold of a resource that a higher priority
process needs, preventing the higher priority process from
proceeding till the resource is freed. This problem is
enlarged when the concurrent processes are in a real time
system where high- priority threads must be served on
time.

We propose a greenhorn approach for the
priority inversion avoidance [1] in QNX RTOS which is
preemption based technique which restores the
resource(s) on the arrival of a high priority thread .

This approach’s interpretations verify that the
approach is unsuitable i.e. unfeasible for real time
systems where high-priority threads must be served on
time as against stated in [1].

Keywords : CPU Scheduling, Priority Inversion, QNX
RTOS,QNX Neutrino.

1. Introduction:-
A real-time operating system (RTOS) is an operating
system (OS) intended to serve real-time application
requests. A key characteristic of a RTOS is the level of its
consistency concerning the amount of time it takes to
accept and complete an application's task; the variability is
jitter.

A real-time OS has an advanced algorithm for
scheduling. Scheduler flexibility enables a wider,
computer-system composition of process priorities, but a
real-time OS is more frequently dedicated to a narrow set
of applications. Key factors in a real-time OS are minimal
interrupt latency and minimal thread switching latency, but
a real-time OS is valued more for how quickly or how
predictably it can respond than for the amount of work it
can perform in a given period of time.

Concurrent executions of processes have become

an important feature of systems especially in multi user
environment. Concurrent processing gives many
advantages like increased response in human interfaces,

I/O-bound applications, distributed and parallel systems,
etc. However the difficulties in using concurrent processes
are also clear. The difficulties include shared data
management of different processes, proper switching of
processes and their restoration and priority scheduling of
processes with different priorities, running at the same
time, etc. Typically concurrency is brought up by
multithreaded environment in which several threads share
the same address space and are executed simultaneously.
But processes share resources; events outside the
scheduler’s control can sometimes prevent the highest-
priority ready processes from running when it should.
When this happens, a critical deadline could be missed,
causing the system to fail.

 In priority scheduling, threads are assigned

priority by the operating system and the resources are
allocated to the threads according to their priorities i.e. if
two threads are waiting for a resource then the higher
priority thread will precede the lower priority thread on the
availability of the resource. A problem that occurs with
priority scheduling in multithreaded environment is the
priority inversion.

The pair of highest and lowest relative priority

must share a resource, say by a mutex, and the third must
have a priority between the other two. The scenario is as
shown in the figure below. First, the low-priority task
acquires the shared resource (time t1). After the high
priority task preempts low, it next tries but fails to acquire
their shared resource (time t2); control of the CPU returns
back to low as high blocks. Finally, the medium priority
task—which has no interest at all in the resource shared by
low and high—preempts low (time t3). At this point the
priorities are inverted: medium is allowed to use the CPU
for as long as it wants, while high waits for low. There
could even be multiple medium priority tasks.

Atul et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

Aspiring Me
Typewritten text
© 2013 IJAIR. ALL RIGHTS RESERVED 	

Aspiring Me
Typewritten text
301

 Page | 2

Figure 1: Priority Inversion Problem

The risk with priority inversion is that it can

prevent the high-priority task in the set from meeting a real-
time deadline. The need to meet deadlines often goes hand-
in-hand with the choice of a preemptive RTOS. Depending
on the end product, this missed deadline outcome might
even be deadly for its user.

One of the major challenges with priority
inversion is that it’s generally not a reproducible problem.
First, the these (as above in figure) steps need to happen—
and in that order. And then the high priority task needs to
actually miss a deadline. One or both of these may be rare
or hard to reproduce events. Unfortunately, no amount of
testing can assure they won’t ever happen in the field.

2. Literature survey:-

Priority inversion is a well-known problem in
concurrent programming especially in real time
applications. There are basically two well-known protocols
that have been used excessively as attempts to avoid
priority inversion. The first is known as priority ceiling [2,
3] and the other is priority inheritance [4, 5]. Priority
ceiling protocols require that a priority value, the ceiling,
be associated with a resource and the corresponding lock
[2]. This ceiling is defined as the maximum priority of
tasks contending for the resource. In this way the priority
inversion problem is resolved. The basic detriment here is
that the protocol requires programmers to supply priority
ceiling for each resource. Secondly priority ceiling may
result in false blocking of threads [4].

The second type of protocol that is seldom used
for priority inversion avoidance is priority inheritance
protocol [3]. Priority inheritance protocol involves raising
the priority of a thread that is holding a lock causing a
higher priority thread to lock. If a thread which is a low
priority thread is using a resource due to which a higher
priority thread is blocked then the low priority thread
inherits the priority of the latter and get executed quickly to
give way to the higher priority thread. Suppose T1 owns
mutex m1 and is waiting for mutex m2 which is owned by
T2 and so on. If a high priority thread (Th) now blocks on
m1, the protocol has to march down the chain (T1, T2, …)
promoting each element otherwise Th would be in danger

of unbounded inversion as lower tasks in the chain failed to
advance because of intermediate priority tasks. So priority
inheritance needs to be a transitive operation. The priority
inheritance solution is transparent to application and
removes hazards like "false blocking" present in priority
ceiling protocol and its variants.

Besides the advantages the priority inheritance
protocol has several other notable disadvantages. Four of
the basic detriments of priority inheritance protocol are
described in [6]. These detriments are stated below:

 The nested critical regions protected by priority
inheritance locks generate long inversion delays.

 Priority inheritance fails if tasks mix inheriting
and non-inheriting operations.

 Priority inheritance worst case performance is
worse than the easy alternatives in most cases.

 Inheritance algorithms are complicated and easy
to get wrong.

The proper proofs of these detriments of priority
inheritance can be seen in [6].
3. Problem formulation: - Need of proposed research
work

This approach is basically made for serving only
real time systems in which high priority thread must be
served as soon as it arrives. Therefore, the system in this
approach saves the resource as backup and when a higher
priority thread arrives it revokes the low-priority thread,
restitutes (restores) the resource, let the high priority thread
executes and later restarts the revoked threads. Although
the low-priority threads may have to be revoked several
times but the high priority thread is always served the best
which is a basic requirement in real time systems.
Preliminary

 Our proposed approach requires language to
have proper mechanism for synchronized sections (to
control access to resource). Synchronized sections are
lexically delimited blocks of code guarded by monitors.
They may be methods or just code blocks. Only one thread
may execute within a synchronized section at any time,
ensuring exclusive access to all monitor protected blocks.

Synchronized section may contain any number of
objects but typically synchronized sections are made small

Atul et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

Aspiring Me
Typewritten text
© 2013 IJAIR. ALL RIGHTS RESERVED 	

Aspiring Me
Typewritten text
302

 Page | 3

by programmers in order to facilitate multiprogramming.
Secondly the objects residing in the synchronized sections
are shared objects.

Multiple Priority Levels

Here we discuss threads with only two priorities:
low and high. However in usual cases systems generally
have threads with several levels of priorities. If several
levels of priorities are used in our system then the lowest
level of priority will suffer a lot in terms of time delay
because each time a higher level thread arrives, the lowest
priority thread will be preempted and restarted later. This
will degrade the overall performance of the system. In
order to cope up with this problem we classify the different
levels of priorities into two categories. These two
categories are high and low. The categories may not
contain equal number of levels of priorities. This is up to
the programmer to make levels of priority on design time.
Since the proposed approach is basically meant for real
time system where the high priority threads are given the
utmost advantage therefore as a tradeoff the low priority
threads have to suffer. Hence making classes of priorities
will prevent complete blocking of lowest priority threads.

4. Outline of Proposed Work:-

As proposed in [1] a novice approach for the
priority inversion avoidance which is preemption based
technique which restores the object(s) on the arrival of a
high priority thread. In this method no log is maintained,
instead we use a shadowing technique for resource
consistency.

 In this approach (for QNX RTOS e.g. QNX
Neutrino Rtos) when a low priority thread is entering a

synchronized section the objects (shared resources) to be
used in the synchronized section are backed up and the low
priority thread is allowed to use the shadow version of the
shared resources. When the low priority thread has finished
its execution the backed up resource is replaced by the
shadow of the resource updated by the low priority thread.

 Now during the execution of the low priority

threads, if a higher-priority thread arrives and needs to
enter the synchronized section, the lower-priority thread in
the synchronized section is preempted and the resource
previously saved as backup is restituted (restored). The
higher priority thread is now allowed to enter the
synchronized section which contains the unaltered
resource. When the higher priority thread is finished the
low priority thread is restarted and then allowed to enter the
synchronized section. The low-priority thread now uses the
shadow version of the updated resource (updated by high-
priority thread).

This means that whenever a low-priority thread
enters the synchronized section it uses the shadow of the
original resource object(s) while if a high priority thread
enters the synchronized section it uses the original resource
object(s) in the synchronized section.

Below are the diagrams showing the proposed
approach in QNX Real Time Operating System.

Figure 2: Architecture Design

Atul et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

Aspiring Me
Typewritten text
© 2013 IJAIR. ALL RIGHTS RESERVED 	

Aspiring Me
Typewritten text
303

 Page | 4

Figure 3:- Data Flow Diagram (DFD)

Figure 4: Activity Diagram

Atul et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED

Aspiring Me
Typewritten text
304

 Page | 5

Figure 5:- Sequence Diagram:

5. Contribution:
By considering following points in QNX Neutrino, we
conclude that this approach is not feasible. However, this
may become a feasible solution for other Real Time
Operation System:

- When we perform a fork() or spawn(), we are
duplicating the process. Because the new process
will have its own independent virtual memory, it
will not inherit any resources (resources such as
memory allocations, file descriptors, will not be
duplicated). For this reason, it is usually
recommended that all Resource Manager process
creation be performed during system boot-up or
initialization.

- We, however, have the Resource Manager main
processing thread receive all incoming messages,
and then create child threads to process each
message as they are received. we can then have
two different thread types, one for lower
priority Client, and one for higher priority Client.

- The thread processing message from a lower
priority Client can be designed to handle a signal.
The Resource Manager main thread will send this
signal when it receives a new message from a
higher priority Client. When the child thread
receives this signal, it will then discard all work
and terminate.

- As long as the Resource Manager main thread
maintains the fact that there is only one child
thread, you do not have to worry about data
corruption by competing threads.

- All message replies are handled by the Resource
Manager main thread. So if a child thread
handling a lower priority Client message is
terminated, no replies are sent. So it will be up to
the Resource Manager main thread to maintain a
copy of the OCB(Open Control Block) data
structure, such that it does not lose that message.

- We will need to design a mechanism in which the
Resource Manager determines the higher/lower
priority information based on the Client.

 However, we found a few potential issues with this type of
implementation.

- For a “file system”, how do we discard the work?
If we are overwriting the contents of a file on the
disk, you will need to keep a copy of the data that
is being overwritten. And then when the discard
and terminate signal is received, halt the current
data transfer, and the write the original data back.
We can reach a condition where the data write
request from a lower priority Client will never be
completed, as it is constantly being interrupted by
a message from a higher priority Client.

- For the above discard implementation … if we
are to store a copy of the original data, you will

Atul et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED

Aspiring Me
Typewritten text
305

 Page | 6

need to have sufficient local memory storage for
this, which will add to the overall memory usage.

- What about DMA(Direct Memory Access)
transactions? If we terminate a DMA transfer
(providing the DMA controller permits this), we
have no way of telling how much progress has
been made, so we will have to overwrite the
entire original data to restore it, which will take
almost double the amount of DMA time (worst
case scenario), as if we had just allowed the
original DMA to complete.

As for other implementations other than “file system” or
“shared memory” … all we can think of at the moment are
communications, audio, and graphics:

- Such an implementation is not feasible for
general serial communications, but possible for
packetized data such as HDLC or Ethernet.
However, most SoC of today uses a
communications engine, which handles the
packet data using DMA. You could terminate a
transmit in mid packet, and the receivers would
discard the packet fragment, but how long will
this take to complete? Would it not be faster to
just let the current packet complete the transmit
instead of terminating it?

- Usually, it is generally accepted that the source
code required to do so would be so prohibitively
large, that it would make the throughput
efficiency unacceptable.

- We would not do this with an audio driver, as
whatever data received is already sent to the
speaker.

- Graphics driver … the only thing we can see
would be to put a wrapper layer in front of the
rendering engine. But the different Clients would
render into their own private video memory
anyways (either by different video layers, or
different virtual video layers that will be
assembled by the Composition Manager), so
again, this is not feasible.

6. Conclusion:
 In contrast with previous research[1] , our study
resoundingly found that the overall QNX RTOS Resource
Manager architecture does not require this additional
overhead and is also unsuitable i.e. unfeasible.Their reasons
are as follows:
 - QNX already has built in “Priority Inversion”
prevention. The QNX Resource Manager (Resource
Manager, hence forth referred to as “Server”) will always
adjust its execution priority to match that of
the Process using this Resource Manager (hence forth
referred to as “Client”). Therefore, if a higher
priority Client (Client H) sends a message to the Server ,

but the Server is currently processing a message from a
lower priority Client (Client L), it will automatically adjust
the priority to match that of the higher priority Client H,
complete the message processing for the lower
priority Client L at that higher priority, and then
immediately begins processing the message from the higher
priority Client H.

- The concept of backing out of a message processing
for Client L in order to process the message for Client
H will create the possibility that it will add more processing
load than realistically needed.

- The Resource Manager can be designed to be multi-
threaded, where multiple threads can be launched to service
messages from the same message queue. Therefore, if
both Client H and Client L sends a message to the Server at
the same time, then both messages will be processes
simultaneously by the two threads, and execution will be
controlled by the QNX Neutrino scheduler, as per
their Client’s priority levels.
 7. Future Work:-

- The Resource Manager can also be designed to have
multiple incoming message queues, one for higher priority
processes, and one for lower priority processes. Each
incoming message queue can then be processed by their
own thread, or their own set of multiple threads.

- By creating a Resource Manager with multiple threads,
they can take advantage of the advanced features of the
QNX Neutrino kernel such as Symmetric Multi-Core
Processing and Adaptive Partitioning. For example, you
can assign the threads that are designated to handle
messages from higher priority Clients in a specific
partition, and with multiple cores in the system, have the
capability to dedicate a percentage of total CPU time to the
simultaneous processing of multiple threads in
the Resource Manager.
 Challenges:-
1] To choose resources which will work with this approach
(Presently, File system is Considered).
 2] Taking backup of resource & conveying it to process
manager.
 3] Variant-(How) To know the amount of work done by
thread .Then, to allow or disallow its execution.
 4] Interdependencies of threads to be known earlier.

Acknowledgment:-
We would like to thank Department of Technology, Shivaji
University, Kolhapur for supporting and providing facilities
to this research works. Special thanks to anonymous
reviewers for their valuable comments on this paper. Also
to :

Ed Lee - Field Application
Engineer ,Asia Pacific Sales, QNX

Atul et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED

Aspiring Me
Typewritten text
306

 Page | 7

Software Systems. A subsidiary of
Research in Motion Limited.

Jeevan Mathew- Co-Owner, BizDev,
Eng. Services at embeteco GmbH &
Co.KG , Hannover Area, Germany
previously at QNX(now RIM)as
Support Specialist From November
2000 – May

 2012 (11 years 7 months).

Umesh Thallum- Engineering Director
at Claytronics Solutions Pvt. Ltd.,
Bengaluru Area, India.

Armin Steinhoff - CEO at

 STEINHOFF Automation & Fieldbus-
 Systems,Germany.

References:-
1] Tarek Helmy & Syed S. Jafri –“Avoidance of Priority
Inversion in Real Time Systems Based on Resource
Restoration “, International Journal of Computer Science &
Applications , 2006 .Technomathematics Research
Foundation,Vol. III, No. I, pp. 40 – 50.
 [2] Frank Mueller "Priority Inheritance and Ceilings for
Distributed Mutual Exclusion" The 20th IEEE Proceedings
on Real-Time Systems Symposium, 1999, 1-3 Dec.,
pp.:340 – 349.
[3] M. Chen and K. Lin. "Dynamic priority ceilings: A
concurrency control protocol for real- time systems " Real-
Time Systems, 2(4):325–346, 1990.
[4] Huang, J., Stankovic, J.A., Ramamritham, K. and
Towsley, D.,"On using priority inheritance in real-time
databases", Twelfth Proceedings on Real-Time Systems
Symposium, IEEE 4-6 Dec. 1991 Page(s):210 – 221
[5] Sha L., Rajkumar, R and Lehoczky, J. P., "Priority
inheritance protocols: An approach to real-time
synchronization.", IEEE Transactions on Computers,
Volume 39, Issue 9, Page(s):1175 – 1185 , Sept. 1990.
[6] Yodaiken, V. "Against priority inheritance" Finite State
Machine Labs (FSMLabs)Technical Report, June 25, 2002.
[7] Nigolah, Cyprian F., Wang, Yingxu, Tan, Xinming,
"Implementing task scheduling and event handling in
RTOS", IEEE proceedings of CCECE 2004-CCGEI 2004,
May 2004.
[8] Reiter, R. "Towards a logical reconstruction of
Relational database theory" in Brodie et al. ch 8, 1984.
[9] Sha L., Rajkumar, R and Lehoczky, J. P., "Priority
inheritance protocols: An approach to real-time
synchronization.",IEEE Transactions on Computers,
Volume 39, Issue 9, Page(s):1175 – 1185 , Sept. 1990.

[10] “The Design and Performance of Real-Time Java
Middleware “-Angelo Corsaro, Student Member, IEEE,
and Douglas C. Schmidt, Member, IEEE , IEEE
Transactions On Parallel And Distributed Systems, Vol.
14, No. 11, November 2003
 [11] “A Commercial-Off-the-Shelf(COTS) Dedication of a
QNX Real Time Operating System (RTOS)”- Jang Yeol
Kim, Young Jun Lee, Se Woo Cheon, Jang Soo Lee, Kee
Choon Kwon Instrumentation and Control / Human
Factors Division, Korea Atomic Energy Research
Institute,1045 Daedeok-daero, Yuseong-gu, Daejeon,
Republic of Korea 305-353. 2010 2nd International
Conference on Reliability, Safety & Hazard (ICRESH-
201O).
 [12] ” Research and Realization of the Mechanism of
Embedded Linux Kernel Semaphore” by WANGYa-Jun -
The teaching and research section of computer ,The
Chinese People's Armed Police Forces Academy, langfang
hebei, China. 2010 3rd International Conference on
Advanced Computer Theory and Engineering(ICACTE).

Aspiring Me
Typewritten text
Atul et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

Aspiring Me
Typewritten text
© 2013 IJAIR. ALL RIGHTS RESERVED 	

Aspiring Me
Typewritten text
307

