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Abstract-This paper presents the implementation of  

SUI-3 Channel Model on an Asynchronous Digital 

Amplitude–Phase Modulation Classifier in Flat 

Fading Channels. In this classifier, we use a SUI-3 

channel to transmit a signal and find the estimates 

for the unknown amplitude, time offset, and noise 

power that are blind to the modulation scheme of the 

received signal. It is shown that the classifier using 

SUI-3 channel model performs well compared to the 

optimal classifier with decreased mean square error 

(MSE) and we observe the probability of correct 

classification of the received signal. 

 

   Index Terms - Modulation classification, SUI-3 

Channel Model, Channel state information, Delay 

estimation. 

 

I. INTRODUCTION 
 

   Asynchronous modulation classification is a process 

of finding out the type of modulation scheme used at the 

receiver end where the receiver does not have any idea 

about the transmitter‟s modulation scheme. In this 
paper, we use an asynchronous likelihood based 
(LB) modulation classifier for digital amplitude-
phase modulated (PSK, QAM) signals in flat-fading 
channels developed in [1]. There are two main 

approaches to modulation classification, namely feature-

based and likelihood-based (LB) [2]. In Likelihood-
based classification, unknown received signal 
parameters must be handled with no knowledge of 
the modulation scheme. The classifier assumes no 
prior knowledge of the channel state (gain, time 
offset, phase shift, and noise level). Although 
asynchronous and synchronous LB classifiers have 
been developed for this class of signals in [1],[3] 
and [6]-[10], SUI-3 channel model parameters have 
not yet been used to transmit these signals. 
 

   SUI channels are the set of 6 specific channels  

models,3 terrain types , a variety of Doppler spreads , 

delay spread , line of sight and non-line of sight as given 

in table 1 [4]. The set of SUI channel models specify 

statistical parameters of microscopic effects (tapped 

delay line, fading, antenna directivity). Each set model 

also defines an antenna correlation and the gain 

reduction factor (GRF) has also been included to 

indicate the connection with the K- factor. Fig.1 shows 

how a signal is transmitted using a SUI channel.  

 

Table 1: SUI Channel Models 
 

Channel Terrain 

Type 

Doppler 

Spread 

Delay 

Spread 

LOS 

SUI-1 C Low Low High 

SUI-2 C Low Low High 

SUI-3 B Low Low Low 

SUI-4 B High Moderate Low 

SUI-5 A Low  High Low 

SUI-6 A High  High  Low 

 

 𝑇𝑥                                                                              𝑅𝑥             

 

Fig 1. 𝑇𝑥  and 𝑅𝑥  block diagram of SUI Model 
 

   Channel State Information (CSI) refers to the known 

channel properties of a communication link. It describes 

how a signal propagates from the  transmitter  to the 

receiver and includes the amplitude, time offsets, phase 

shifts and noise power .CSI  needs to be estimated at the 

receiver and usually quantized and fed back to the 

transmitter. In general, radios without complete 

knowledge of the received signal‟s modulation scheme 

must first classify the desired signal before they can 

synchronize with the received symbols and estimate the 

channel. 
 

    In this paper, we implement SUI-3 channel model 

parameters [5] on an asynchronous likelihood based 

(LB) modulation classifier for digital amplitude-phase 
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modulated (PSK, QAM ) signals in flat-fading channels. 

These parameters include the delay, power, K-factor, 

doppler spread, antenna correlation, gain reduction 

factor and the normalization factor of the transmitted 

signal. This new classifier assumes no prior knowledge 

of the channel state (gain, time offset, phase shift, and 

noise level). 
 

    During the implementation of the SUI-3 Channel 

model for the classifier, we use method-of-moments 

estimators for the unknown amplitude, time offset, and 

noise power, each of which is blind to the modulation 

format (PSK, QAM, etc) and modulation order of the 

received signal [1] and [6].  

                    

II.SYSTEM MODEL 

 

    The SUI-3 channel parameters have been used to 

transmit signals with N number of independent random 

samples. The parameters include the number of taps of 

the Doppler filter, observation rate, doppler resolution of 

SUI parameter, power in each tap, rician factor, delay, 

Doppler frequency, antenna correlation and gain 

normalization factor. Assuming that the transmitted 

signal passes through a flat fading channel, the signal 

r(t) can be written from [1] as 

 

𝑠 𝜉 = 𝑅  𝐴𝑡  𝑆𝑘  𝑔 𝜉 − 𝑘𝑇 𝑒𝑗𝜔𝑐  𝜉

∞

𝑘=−∞

 ,                     (1) 

 

where 𝐴𝑡  is the transmitter gain, 𝑆𝑘  is the modulated 

data symbol, 𝑔(⋅) is the (real-valued) pulse shape, T is 

the symbol interval, and 𝜔𝑐 = 2𝜋𝑓𝑐where 𝑓𝑐  is the  

carrier frequency. The symbols 𝑆𝑘 , assumed to be 

normalized to unit average power without loss of 

generality, are taken from a (complex) symmetric 

constellation that defines the modulation scheme used. 

The pulse shape is assumed to have unit energy, without 

loss of generality, and to satisfy the Nyquist intersymbol 

interference criterion. 
 

   We now implement the SUI-3 channel model given in 

Table 2. to transmit the signal [5]. 

  

Table 2:SUI-3 Channel Model Definition 
 

SUI-3 Channel 

 Tap 1 Tap 2 Tap 3 Units 

Delay 0 0.5 1 𝜇s 

Power (omni ant.) 

K Factor (omni 

ant.) 

0 

1 

-5 

0 

-10 

0 

dB 

Power (30o ant.) 

K Factor (30o ant.) 

0 

3 

-11 

0 

-22 

0 

dB 

Doppler 0.4 0.4 0.4 Hz 

Antenna Correlation: 𝝆 𝑬𝑵𝑽 = 0.4 
Gain Reduction Factor: GRF = 3 dB 

Normalization Factor: 𝑭𝒐𝒎𝒏𝒊 = -1.5113 dB,F30° = -0.3573 dB 

   We use the method of filtered noise to generate 

channel coefficients with the specified distribution and 

spectral power density. For each tap a set of complex 

zero-mean Gaussian distributed numbers is generated 

with a variance of 0.5 for the real and imaginary part, so 

that the total average power of this distribution is 1. This 

yields a normalized Rayleigh distribution (equivalent to 

Rice with K=0) for the magnitude of the complex 

coefficients. If a Rician distribution (K>0 implied) is 

needed, a constant path component m has to be added to 

the Rayleigh set of coefficients. The ratio of powers 

between this constant part and the Rayleigh (variable) 

part is specified by the K-factor. For this general case, 

we show how to distribute the power correctly by first 

stating the total power P of each tap: 
 

                         P= 𝑚 2+  𝜍2  ,                                    (2) 
 

where m is the complex constant and   𝜍2 the variance of 

the complex Gaussian set. Second, the ratio of powers 

is: 
 

                           K= 
 𝑚 2

  𝜍2  ,                                            (3)   
 

   From (2) and (3), we can find the power of the 

complex Gaussian and the power of the constant part as: 
 

         𝜍2 = 𝑃
1

𝐾+1
 𝑎𝑛𝑑   𝑚 2 = 𝑃

𝐾

𝐾+1
 ,                           (4) 

 

   From (4), we can see that for K=0 the variance 

becomes P and the constant part power diminishes, as 

expected.  Note that we choose a phase angle of 0° for m 

in the implementation. 
 

  The random components of the coefficients generated 

in the previous paragraph have a white spectrum since 

they are independent of each other. The SUI channel 

model defines a specific power spectral density (PSD) 

function for these scatter component channel 

coefficients called „rounded‟ PSD which is given from 

[5] as:   
 

              𝑆 𝑓 =  
1 − 72𝑓0

2, 𝑓0 ≤ 1

0, 𝑓0 > 1
                              (5) 

 

where 𝑓0 =
𝑓

𝑓𝑚
 

 

   To arrive at a set of channel coefficients with this PSD 

function, we correlate the original coefficients with a 

filter which amplitude frequency response is written 

from (5) as 
 

                            𝐻(𝑓) =  𝑆(𝑓)                                  (6) 
 

   The SUI channel model also define an antenna 

correlation, which has to be considered if multiple 

transmit or receive elements, i.e. multiple channels, are 
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being simulated. Antenna correlation is commonly 

defined as the envelope correlation coefficient between 

signals received at two antenna elements. 

   In the general case of frequency selective (delay-

spread) propagation, the channel is modeled from [5] as 

a tapped-delay line: 
 

                   g(t,𝜏)= 𝑔𝑙 𝑡 𝜌(𝜏 − 𝜏𝑙)
𝐿
𝑙=1 ,                      (7)            

 

where L is the number of taps, 𝑔𝑙 𝑡  are the time-

varying tap coefficients and 𝜏 and 𝜏𝑙  are the tap delays. 
 

   We define all the simulation parameters which include 

number of independent random realizations, observation 

rate in Hz, number of taps of the Doppler filter, Doppler 

resolution of SUI parameter in Hz (used in resampling-

process) and accuracy of resampling process. Then, we 

define the SUI-3 Channel parameters which include 

power in each tap in dB, rician K-factor in linear scale, 

tap delay in μs, Doppler maximal frequency parameter 

in Hz, antenna correlation (envelope correlation 

coefficient)and gain normalization factor in dB. 

   We calculate the power in the constant and random 

components of the Rice distribution for each tap which 

includes the linear power P ( 𝑃 = 10
𝑃

10  ), variance 

𝜍,constant power (a function of linear power and ricean 

K-factor) and a constant part (square root of constant 

power).Now, we create the Rician channel coefficients 

with the specified powers and the coefficient sets which 

is a function of the number of taps (L) and the number 

of independent random realizations (N). 
 

   Before combining the coefficient sets, the white 

spectrum is shaped according to the Doppler PSD 

function (5). Since there are no frequency components 

higher than fm, the channel can be represented with a 

minimum sampling frequency of 2 fm, according to the 

Nyquist theorem. We therefore simply define that our 

coefficients are sampled at a frequency of 2 fm. The 

total power of the filter has to be normalized to one, so 

that the total power of the signal is not changed by it. 
 

   Now that the fading channel is fully generated, we 

have to apply the normalization factor and, if applicable, 

the gain reduction factor. 
 

The received signal (𝜉)  is given from [1] by  

𝑅  𝐴𝑐𝐴 𝑡  𝑆𝑘

∞

𝑘=−∞

g 𝜉 − kT − 𝜉𝑐 𝑒
𝑗 (𝜔𝑐  𝜉+𝜃) ,           (8) 

 

where 𝐴𝑐 ,𝜃, and 𝜉𝑐  are the gain, phase shift, and time 

delay introduced by the channel, respectively. It is 

assumed that the channel remains constant during the 

observation interval. 

   Let 𝜉𝑐 −  𝜉0   = (𝜆 + 𝜈)T, where 𝜆 represents the 

integer number of symbols offset and 𝜈  represents the 

remaining fraction of a symbol offset (0 ≤ 𝜈 < 1). Using 

this notation, (8) can be written as 

 

𝑟 𝑡 = 𝑅  𝛼  𝑆𝑘𝑔(𝑡 − (𝑘 + 𝜆 + 𝑣)𝑇)𝑒𝑗 (𝜔𝑐  𝑡+𝜃)

∞

𝑘=−∞

 

+ 𝑛 𝑡 ,                                                (9) 
 

where 𝛼 = 𝐴𝑐𝐴 𝑡  and 𝑛 𝑡   is a zero-mean Gaussian 

noise process with two-sided power spectral density 

𝑁𝑜/2. Note that the phase shift due to the time reference 

change is incorporated into 𝜃. The following 

assumptions about the received signal are used in the 

analysis that follows. The symbol 𝑆𝑘  is uniformly 

distributed over the set of all possible constellation 

values of the modulation scheme used. The pulse shape 

g(⋅), the symbol interval T , and the carrier frequency 𝑓𝑐   

are assumed to be known. All other parameters, namely 

the amplitude 𝛼, phase shift 𝜃, time offset (𝜆+𝜈), and 

noise power 𝑁𝑜  are modeled as deterministic unknown 

variables. 

 

III.MODULATION CLASSIFIER 
 

The classifier was developed in [1] based upon the 

output of a receiver that consists of a frequency 

conversion stage (from RF to baseband) and a matched 

filter. From (9), the output of the receiver at 𝑡 = (𝑙 + 𝑣), 

where 𝑙 is an integer and 𝑣 is a real number in the range 

[0, 1), is 

𝑟𝑙 ,𝑣 =  𝑟 𝜏 𝑒−𝑗𝜔𝑐   𝜏

∞

−∞

𝑔  𝑙 + 𝑣 𝑇 − 𝜏 𝑑𝜏 

               =
𝛼𝑒 𝑗𝜃

2
 𝑆𝑘𝑅((∞

𝑘=−∞ 𝑙 − 𝜆 + 𝑣 − 𝜈 − 𝑘)𝑇) +

                   𝑛𝑙,𝑣 ,                                                                     (10) 

 

where 𝑅 𝑡 =   𝑔 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏
∞

−∞
 and n𝑙,𝑣 is a zero-

mean complex Gaussian random variable with variance 

𝑁𝑜/2.In the classifier used, it was first assumed that the 

receiver has a perfect estimate of the fractional time 

offset 𝜈; that is, the receiver perfectly estimates when 

symbol transitions occur.  

 
 

Fig. 2.An asynchronous qHLRT-based modulation 

classifier [1] 
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In this case, the vector 𝑟𝑣 = [𝑟1,𝑣 , 𝑟2,𝑣 , … . . , 𝑟𝑁𝑐 ,𝑣] is a set 

of sufficient statistics for the detection of the symbols 

 𝑆1−𝜆 , 𝑆2−𝜆 , … . , 𝑆𝑁𝑐−𝜆  .(Recall that 𝜆 is unknown) Given 

that the 𝑟𝑙 ,𝑣 , values are independent, the Total 

Probability Theorem Π can be used to show that  

    

         𝑝 𝑟𝑣 𝐻𝑖  =

           𝑝  𝑟𝑙 ,𝑣 𝑆𝑚,𝑖 , 𝐻𝑖)𝑃 𝑆𝑚,𝑖 𝐻𝑖  ,            (11)
𝐿𝑖
𝑚=1

𝑁𝑐
𝑙=1  

 

where 𝑆𝑚,𝑖  is one of the 𝐿𝑖  complex constellation values 

of the 𝑖th modulation scheme. Taking the logarithm of 

𝑝 𝑟𝑣 𝐻𝑖 , and using the fact that (10) reduces to   𝑟𝑙 ,𝑣 =

 
𝛼𝑒 𝑗𝜃

2
𝑆𝑙−𝜆  + 𝑛𝑙 ,𝑣  when 𝑣 = 𝜈, the classifier can be written 

from [1] as  
 

𝐻 = arg 𝑚𝑎𝑥 
𝐻𝑖

 ln(
1

𝐿𝑖

𝑁𝑐

𝑙=1

 𝑝 𝑟𝑙 ,𝑣 𝑆𝑚,𝑖𝐻𝑖 

𝑙𝑖

𝑚=1

 

 

              =  arg 𝑚𝑎𝑥 
𝐻𝑖

 ln(
1

𝐿𝑖

𝑁𝑐

𝑙=1

 𝑒
2

𝑁0 
 𝑟𝑙,𝑣−

𝛼𝑒𝑗𝜃

2
𝑆𝑚,𝑖 

2𝑙𝑖

𝑚=1

 , (12) 

 

 Note that the classifier given by (12) is a function of 

𝛼, 𝜃, 𝜈 𝑎𝑛𝑑 𝑁0 . In order to handle these unknowns, we 

use a qHLRTbased approach. In this approach, the 

channel parameters are estimated through the use of 

low-complexity estimators that are blind to the 

modulation scheme of the received signal. This 

approach is used for two reasons. First, this approach  

does not require knowledge of the statistics of the 

channel parameters. Instead, these parameters are 

modeled as deterministic unknown variables. Second, 

this approach does not require multi-dimensional 

maximum-likelihood estimation of the parameters, 

leading to a lower complexity classifier. 
 

   Given that 𝛼, 𝜃, 𝜈, and 𝑁𝑜   are unknown at the 

receiver, the qHLRT approach dictates that these values 

are replaced by their estimates (denoted byˆ). This leads 

to the final form of  
 

𝐻 = arg 𝑚𝑎𝑥 
𝐻𝑖

 ln(
1

𝐿𝑖

𝑁𝑐

𝑙=1

 𝑒
2
𝑁0  𝑟𝑙,𝑣 −

𝛼 𝑒𝑗𝜃 

2
𝑆𝑚,𝑖 

2

,             (13)

𝑙𝑖

𝑚=1

 

 

where 𝑖 = 1, 2, . . . , 𝑐, for the proposed asynchronous 

qHLRT-based modulation classifier, where 𝑟𝑙 ,𝑣   is the 

output of the receiver given the sampling instant (𝑙 +𝑣 )𝑇 

. 

IV. ESTIMATION OF THE UNKNOWN RECEIVED 

SIGNAL PARAMETERS 
 

    After transmitting a signal through a SUI-3 channel 

model parameters, we need to calculate the estimates for 

the unknown amplitude, time offset, and noise power of 

the received signal. For this, an estimator that is blind to 

the signal‟s modulation format (PSK, QAM, or PAM) 

and order is used [Ref.1]. The estimators are based on a 

low-complexity estimation approach known as the 

Method-of-Moments (MoM). This is a suboptimal 

approach in which parameters are estimated through the 

solution of a system of statistical moment equations.    

   The first of these moments is   𝑟𝑙,𝑣1
 
2
  , where 𝑟𝑙,𝑣1

  

is the output of the receiver at t = (𝑙 + 𝑣1)T , 𝑙 is an 

arbitrarily chosen integer, and 𝑣1 is an arbitrarily chosen 

real number in the range (0, 1). Using (10) with 𝑣 = 𝑣1, 

the moment can be written as  

 

𝑀𝑣1 = 𝐸[ 𝑟𝑙,𝑣1
 
2

=
𝛼2

4
𝜓𝑣1,𝜈 +

𝑁𝑜

2
,                     (14) 

   

assuming the data symbols are independent. In (14), the 

function 𝜓𝑣1 ,𝜈  is defined as 
 

𝜓𝑣1,𝜈 =    𝑅((𝑙 −

∞

𝑘=−∞

𝜆 + 𝑣1 − 𝜈 − 𝑘)𝑇)² 

                       =    𝑅((

∞

𝑘=−∞

𝑣1 − 𝑣 − 𝑘 ҆ ҆)𝑇)² ,               (15) 

 

    It is important to note that (14) is a function of the 

unknowns 𝛼, 𝜈, and 𝑁𝑜  while not being a function of the 

unknown data, or 𝜃. Also, (14) is not a function of 𝑙, 

which implies that 𝐸[ 𝑟𝑙1 ,𝑣1 
2
 and 𝐸[ 𝑟𝑙2 ,𝑣1 

2
 are equal 

for all integers 𝑙1  and 𝑙2 . For this reason, 

𝐸[ 𝑟𝑙,𝑣1
 
2

=𝑀𝑣1
.Assuming a square root-raised cosine 

pulse shape, 𝜓𝑣1,𝜈   is equal to 1 +𝛽/4 (cos(2𝜋(𝑣1 − 𝜈)) − 

1). Therefore, for this pulse shape, (14) can be rewritten 

as 
 

𝑁𝑜 = 2𝑀𝑣1
− 

𝛼2

8
 4 + 𝛽(cos 2𝜋 𝜈 − 𝑣1  − 1       (16) 

 

   Next, it is assumed that the receiver has a new 

sampling instant of (𝑙 + 𝑣2), where 𝑙  is an arbitrarily 

chosen integer and 𝑣2 is an arbitrarily chosen real 

number in the range [0, 1), with 𝑣2≠ 𝑣1. (Note that 𝑙 and 

𝑣2 have no relation to 𝜆 or 𝜈.) Given this new sampling 

instant, a second equation for 𝑁𝑜  can be determined 

from the moment 𝐸[ 𝑟𝑙,𝑣2
 
2
=𝑀𝑣2

 .Setting these two 𝑁𝑜  

equations equal, and performing some algebraic 

manipulation, gives 
 

𝛼2 =  
16(𝑀𝑣1 − 𝑀𝑣2)

𝛽[cos 2𝜋 𝜈 − 𝑣1  − cos 2𝜋(𝜈 − 𝑣2 )]
,     (17) 

 

which is only a function of the unknowns 𝛼 and 𝜈. 
 

    The final step is to use a third moment equation to 

remove the dependence on one of the two unknowns of 

(17). Assuming a third sampling instant (𝑙 + 𝑣3) , where 



Nikesh et al. / IJAIR  Vol. 2  Issue 8  ISSN: 2278-7844 

 

© 2013 IJAIR. ALL RIGHTS RESERVED   269 
 

again 𝑙 is an arbitrarily chosen integer and 𝑣3 is an 

arbitrarily chosen real number in the range [0, 1), with 

 𝑣3 ≠ 𝑣2 ≠ 𝑣1, the moment 𝐸[ 𝑟𝑙,𝑣3
 
2

=𝑀𝑣3
 can be 

determined. (Note that 𝑙 and 𝑣3  have no relation to 𝜆 or 

𝜈.) Using this third moment with either of the previous 

two moments, a second equation for 𝛼2 can be 

determined. Setting the two 𝛼2 equations equal and 

performing some manipulation leads to (20), where 

𝑋𝑖 = cos⁡(2𝜋𝑣𝑖)  and 𝑦𝑖 = sin⁡(2𝜋𝑣𝑖) Inverting (20), 

and assuming that atan⁡(𝑍) is in the range [−𝜋/2, 𝜋/2],   

may assume one of three possible values, 
 

𝑣 =  
atan⁡(𝑍)

2𝜋
,
atan⁡(𝑍)

2𝜋
+

1

2
,
atan⁡(𝑍)

2𝜋
+ 1 ,         (18) 

 

   Therefore, the unknowns 𝛼, 𝜈, and 𝑁𝑜  can be 

determined from the moments 𝑀𝑣1 , 𝑀𝑣2
 , and 𝑀𝑣3

 . 

This is done by first using the moments to determine the 

three possible values for 𝜈 given by (18). One of the 

values can be immediately discarded for falling outside 

of the range 0 ≤ 𝜈 < 1. Given the remaining two possible 

𝜈 values, two possible values for 𝛼 are determined 

through (17). Finally, the values for 𝛼 and 𝜈 are used to 

determine 𝑁𝑜  through (16). In practice, the moments 

𝑀𝑣1 , 𝑀𝑣2
 , and 𝑀𝑣3

  are unknown and thus must be 

estimated from the received signal. This estimation can 

be done using the simple sample average estimator 
 

𝑀𝑣𝑖
 =

1

𝑁𝑒𝑠𝑡
   𝑟𝑙 ,𝑣𝑖  

2
, 𝑖 = 1,2,3,                          (19)

𝑙𝑖+𝑁𝑒𝑠𝑡
𝑙=𝑙𝑖

          
 

where 𝑟𝑙 ,𝑣𝑖
 is the receiver output sampled at (𝑙 + 𝑣𝑖)𝑇 , 

𝑁est is the number of samples observed, and 𝑙𝑖  is an 

arbitrary integer. Therefore, given that the moments 

themselves are estimated, the solutions to (16), (17) and 

(18) are estimates for the parameters  𝑁𝑜 , 𝛼, and  𝑣 

respectively. In order to estimate 𝜃, a MoM-based 

algorithm known as the 𝑀-power phase synchronizer is 

used, which is also blind to the received signal‟s 

modulation scheme. This estimator uses a sample 

average estimator for the 𝑀th moment of the outputs 

𝑟𝑙 ,𝑣 . For example, for PSK schemes, the estimator is 

𝜃 𝑀−𝑃𝑆𝐾 =
1

𝑀
arg⁡  𝑟𝑙,𝑣 

𝑀
𝑁𝑐

𝑙=1
  

 

where 𝑀 is the order of the modulation scheme 

assumed. For QAM scheme 

𝜃 𝑄𝐴𝑀 =
1

4
arg⁡  𝑟𝑙,𝑣 

4
𝑁𝑐

𝑙=1
  

 tan 2𝜋𝑣 

=
 𝑀𝑣3−𝑀𝑣2

 𝑋1 +  𝑀𝑣1−𝑀𝑣3
 𝑋2 +  𝑀𝑣2

− 𝑀𝑣1
 𝑋3

 𝑀𝑣2
− 𝑀𝑉3

 𝑌1 + (𝑀𝑣3
− 𝑀𝑣1

)𝑌2 + (𝑀𝑣1
− 𝑀𝑣2

)𝑌3

= 𝑍,                                                                                   (20)  

V.PERFORMANCE ANALYSIS 
 

  The asynchronous modulation classifier is shown in 

Fig.2.SUI-3 Channel Model was used to decrease the 

path loss and improve the performance of the classifier 

where the signal was QPSK modulated. After this, we 

found the estimates for the amplitude (𝛼), time offset 

(𝜈) and noise power (𝑁𝑜).Then, these estimates were 

compared with their true values to calculate their mean 

square error and the average probability of correct 

classification of the received signal. 

   The values of  𝑣1, 𝑣2 and 𝑣3 are equal to 0.1,1/3 and 

2/3 respectively. The unknown values of amplitude 𝛼 

was assumed to be Rayleigh distributed with 

E[𝛼2]=1.Fig.3 presents the performance of the  MoM 

estimators of the old model used from [1] for a square 

root-raised cosine pulse with roll-off factor of β = 0.35. 

Fig.4 presents the performance of the MoM estimators 

after using a SUI-3 channel for a square root-raised 

cosine pulse with roll-off factor of  β = 0.35.As 

expected, for both these models, as the SNR and/or 𝑁𝑒𝑠𝑡  

was increased, the average mean square error (MSE) of 

the estimates decreases and this decrease in MSE with 

respect to SNR was greater after using the SUI-3 

Channel. The decrease in MSE in fig.3 and fig.4 is 

because an increase in either of these parameters reduces 

the estimation error of  𝑀𝑣1
 , 𝑀𝑣2

 , and 𝑀𝑣3
. 

Additionally, it was seen that the average MSE of the 

estimates increases for lower roll-off factors. This is due 

to the fact that timing offsets result in larger intersymbol 

interference for lower roll-off factors, leading to an 

overall reduction in the performance of the estimators. 

Fig.5 presents the average probability of correct 

classification of the MoM estimators after using the 

SUI-3 channel for a square root-raised cosine pulse with 

roll-off factor of β = 0.35 and β=0.75 with the number of 

samples used as 500 and 1000.Fig. 6 presents the 

average probability of correct classification for the case 

in which the roll-off factors of the pulse shaping filters 

at the transmitter and receiver are mismatched. It was 

observed that the average probability of correct 

classification increases with the increase in signal to 

noise ratio. 
 

   The performance also improved with the increase in 

the number of samples used and the roll-off factors. The 

decrease in the mean square error means that the 

estimated values of the amplitude, time offset and noise 

power approach closer to their true values. Average 

probability of correct classification of the transmitted 

signal at the receiver improves and optimum 

performance of the classifier can hence be obtained. 
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Fig 3.Average MSE given a square root-raised cosine pulse shape 

(Blue:𝑁𝑒𝑠𝑡  = 500 , Red:𝑁𝑒𝑠𝑡  =1000)  of the old model [1] 

 
 

Fig.4.Average MSE given a square root-raised cosine pulse shape 

(Blue:𝑁𝑒𝑠𝑡  = 500 , Red:𝑁𝑒𝑠𝑡  =1000) using the SUI-3 channel model 

 
 

Fig.5. Average probability of correct classification given a Rayleigh 

fading model (𝑁𝑐 = 500) using the SUI-3 channel model 

 

 
 

Fig. 6. Average probability of correct classification for the case in 

which the roll-off factors of the pulse shaping filters at the transmitter 

and receiver are mismatched (𝑁𝑒𝑠𝑡  = 10000, 𝑁𝑐= 500, solid: β = 0.75, 

dashed: β = 0.35) using the SUI-3 channel model 

 

 

VI. CONCLUSIONS 
 

A modulation classifier, that assumes no prior 

knowledge of the channel state, was used for digital 

amplitude-phase modulated signals in flat-fading 

channels [1].Modulation classification is a challenging 

problem as it requires channel information for optimal 

performance. In order to estimate the unknown 

amplitude, time offset, and noise power of the received 

signal for use in the classifier, MoM estimators were 

used that are blind to the received signal‟s modulation 

scheme.SUI-3 Channel was used to transmit a signal 

that was QPSK modulated through constant and random 

paths of Rayleigh and Rician fading models. We 

observed the decrease in MSE with respect to SNR of 

amplitude (𝛼), time offset (𝑣) and noise power (𝑁𝑜) for 

different number of samples used and found out that the 

use of SUI-3 channel model parameters reduces the 

MSE to a greater extent as compared to the old model 

used in [1].We also observed that average probability of 

correct classification of the received signal increases 

with the increase in the number of samples (N) and roll-

off factors (β) of the estimates. Thus, the overall 

performance of the modulation classifier improves. 
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